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In this age of viruses and hackers, of electronic eavesdropping and electronic fraud, 

security is paramount.

As the disciplines of cryptography and network security have matured, more practical, 

readily available applications to enforce network security have developed. This text 

provides a practical survey of both the principles and practice of cryptography and 

network security. First, the basic issues to be addressed by a network security capability 

are explored through a tutorial and survey of cryptography and network security 

technology. Then, the practice of network security is explored via practical applications 

that have been implemented and are in use today.
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Notation

Even the natives have difficulty mastering this peculiar vocabulary.

The Golden Bough, Sir James George Frazer

Symbol Expression Meaning

D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K.

D, PRa D(PRa, Y) Asymmetric decryption of ciphertext Y using A's private key PRa

D,PUa D(PUa, Y) Asymmetric decryption of ciphertext Y using A's public key PUa

E, K E(K, X) Symmetric encryption of plaintext X using secret key K.

E, PRa E(PRa, X) Asymmetric encryption of plaintext X using A's private key PRa

E, PUa E(PUa, X) Asymmetric encryption of plaintext X using A's public key PUa

K  Secret key

PRa  Private key of user A

PUa  Public key of user A

C, K C(K, X) Message authentication code of message X using secret key K.

GF(p)  The finite field of order p, where p is prime. The field is defined as 
the set Zp together with the arithmetic operations modulo p.

GF(2n)  The finite field of order 2n.

Zn  Set of nonnegative integers less than n

gcd gcd(i, j) Greatest common divisor; the largest positive integer that divides 
both i and j with no remainder on division.

mod a mod m Remainder after division of a by m.

mod, a  b(mod m) a mod m = b mod m

mod, a  b(mod m) a mod m  b mod m

dlog dlog
a,p

(b) Discrete logarithm of the number b for the base a (mod p)

φ φ(n) The number of positive integers less than n and relatively prime to n. 
This is Euler's totient function.
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Notation

Σ a1 + a2 + ... + an

a1 x a2 x ... x an

| i|j i divides j, which means that there is no remainder when j is divided 
by i

|,| |a| Absolute value of a

|| x||y x concatenated with y

x  y
x is approximately equal to y

x  y
Exclusive-OR of x and y for single-bit variables; Bitwise exclusive-OR 
of x and y for multiple-bit variables

, x The largest integer less than or equal to x

x  S The element x is contained in the set S.

A  (a1,a2, ...,ak) The integer A corresponds to the sequence of integers (a1,a2, ...,ak)
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[Page xiii]

Preface

"The tie, if I might suggest it, sir, a shade more tightly knotted. One aims at the perfect 
butterfly effect. If you will permit me"

"What does it matter, Jeeves, at a time like this? Do you realize that Mr. Little's domestic 
happiness is hanging in the scale?"

"There is no time, sir, at which ties do not matter."

Very Good, Jeeves! P. G. Wodehouse

In this age of universal electronic connectivity, of viruses and hackers, of electronic eavesdropping and 
electronic fraud, there is indeed no time at which security does not matter. Two trends have come 
together to make the topic of this book of vital interest. First, the explosive growth in computer systems 
and their interconnections via networks has increased the dependence of both organizations and 
individuals on the information stored and communicated using these systems. This, in turn, has led to a 
heightened awareness of the need to protect data and resources from disclosure, to guarantee the 
authenticity of data and messages, and to protect systems from network-based attacks. Second, the 
disciplines of cryptography and network security have matured, leading to the development of practical, 
readily available applications to enforce network security.
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[Page xiii (continued)]

Objectives

It is the purpose of this book to provide a practical survey of both the principles and practice of 
cryptography and network security. In the first two parts of the book, the basic issues to be addressed 
by a network security capability are explored by providing a tutorial and survey of cryptography and 
network security technology. The latter part of the book deals with the practice of network security: 
practical applications that have been implemented and are in use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular, it is impossible to 
appreciate the significance of some of the techniques discussed in this book without a basic 
understanding of number theory and some results from probability theory. Nevertheless, an attempt has 
been made to make the book self-contained. The book presents not only the basic mathematical results 
that are needed but provides the reader with an intuitive understanding of those results. Such 
background material is introduced as needed. This approach helps to motivate the material that is 
introduced, and the author considers this preferable to simply presenting all of the mathematical 
material in a lump at the beginning of the book.
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[Page xiii (continued)]

Intended Audience

The book is intended for both an academic and a professional audience. As a textbook, it is intended as 
a one-semester undergraduate course in cryptography and network security for computer science, 
computer engineering, and electrical engineering majors. It covers the material in IAS2 Security 
Mechanisms, a core area in the Information Technology body of knowledge; NET4 Security, another core 
area in the Information Technology body of knowledge; and IT311, Cryptography, an advanced course; 
these subject areas are part of the Draft ACM/IEEE Computer Society Computing Curricula 2005.

[Page xiv]

The book also serves as a basic reference volume and is suitable for self-study.
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[Page xiv (continued)]

Plan of the Book

The book is organized in four parts:

Part One. Conventional Encryption: A detailed examination of conventional encryption 
algorithms and design principles, including a discussion of the use of conventional 
encryption for confidentiality.

Part Two. Public-Key Encryption and Hash Functions: A detailed examination of 
public-key encryption algorithms and design principles. This part also examines the use of 
message authentication codes and hash functions, as well as digital signatures and public-
key certificates.

Part Three. Network Security Practice: Covers important network security tools and 
applications, including Kerberos, X.509v3 certificates, PGP, S/MIME, IP Security, SSL/TLS, 
and SET.

Part Four. System Security: Looks at system-level security issues, including the threat 
of and countermeasures for intruders and viruses, and the use of firewalls and trusted 
systems.

In addition, the book includes an extensive glossary, a list of frequently used acronyms, and a 
bibliography. Each chapter includes homework problems, review questions, a list of key words, 
suggestions for further reading, and recommended Web sites.

A more detailed, chapter-by-chapter summary of each part appears at the beginning of that part.
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[Page xiv (continued)]

Internet Services for Instructors and Students

There is a Web site for this book that provides support for students and instructors. The site includes 
links to other relevant sites, transparency masters of figures and tables in the book in PDF (Adobe 
Acrobat) format, and PowerPoint slides. The Web page is at WilliamStallings.com/Crypto/Crypto4e.html. 
As soon as typos or other errors are discovered, an errata list for this book will be available at 
WilliamStallings.com. In addition, the Computer Science Student Resource site, at WilliamStallings.com/
StudentSupport.html, provides documents, information, and useful links for computer science students 
and professionals.
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[Page xiv (continued)]

Projects for Teaching Cryptography and Network Security

For many instructors, an important component of a cryptography or security course is a project or set of 
projects by which the student gets hands-on experience to reinforce concepts from the text. This book 
provides an unparalleled degree of support for including a projects component in the course. The 
instructor's manual not only includes guidance on how to assign and structure the projects, but also 
includes a set of suggested projects that covers a broad range of topics from the text:

[Page xv]

●     Research projects: A series of research assignments that instruct the student to research a 
particular topic on the Internet and write a report

●     Programming projects: A series of programming projects that cover a broad range of topics 
and that can be implemented in any suitable language on any platform

●     Lab exercises: A series of projects that involve programming and experimenting with concepts 
from the book

●     Writing assignments: A set of suggested writing assignments, by chapter
●     Reading/report assignments: A list of papers in the literature, one for each chapter, that can 

be assigned for the student to read and then write a short report

See Appendix B for details.
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[Page xv (continued)]

What's New in the Fourth Edition

In the three years since the third edition of this book was published, the field has seen continued 
innovations and improvements. In this new edition, I try to capture these changes while maintaining a 
broad and comprehensive coverage of the entire field. To begin this process of revision, the third edition 
was extensively reviewed by a number of professors who teach the subject. In addition, a number of 
professionals working in the field reviewed individual chapters. The result is that, in many places, the 
narrative has been clarified and tightened, and illustrations have been improved. Also, a large number of 
new "field-tested" problems have been added.

Beyond these refinements to improve pedagogy and user friendliness, there have been major 
substantive changes throughout the book. Highlights include the following:

●     Simplified AES: This is an educational, simplified version of AES (Advanced Encryption 
Standard), which enables students to grasp the essentials of AES more easily.

●     Whirlpool: This is an important new secure hash algorithm based on the use of a symmetric 
block cipher.

●     CMAC: This is a new block cipher mode of operation. CMAC (cipher-based message 
authentication code) provides message authentication based on the use of a symmetric block 
cipher.

●     Public-key infrastructure (PKI): This important topic is treated in this new edition.
●     Distributed denial of service (DDoS) attacks: DDoS attacks have assumed increasing 

significance in recent years.
●     Common Criteria for Information Technology Security Evaluation: The Common Criteria 

have become the international framework for expressing security requirements and evaluating 
products and implementations.

●     Online appendices: Six appendices available at this book's Web site supplement the material in 
the text.

In addition, much of the other material in the book has been updated and revised.
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Chapter 0. Reader's Guide

0.1 Outline of this Book

0.2 Roadmap

Subject Matter

Topic Ordering

0.3 Internet and Web Resources

Web Sites for This Book

Other Web Sites

USENET Newsgroups

 

[Page 2]

The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on 
our own readiness to receive him; not on the chance of his not attacking, but rather on 
the fact that we have made our position unassailable.

The Art of War, Sun Tzu

This book, with its accompanying Web site, covers a lot of material. Here we give the 
reader an overview.
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[Page 2 (continued)]

0.1. Outline of this Book

Following an introductory chapter, Chapter 1, the book is organized into four parts:

Part One: Symmetric Ciphers: Provides a survey of symmetric encryption, including 
classical and modern algorithms. The emphasis is on the two most important algorithms, 
the Data Encryption Standard (DES) and the Advanced Encryption Standard (AES). This 
part also addresses message authentication and key management.

Part Two: Public-Key Encryption and Hash Functions: Provides a survey of public-
key algorithms, including RSA (Rivest-Shamir-Adelman) and elliptic curve. It also covers 
public-key applications, including digital signatures and key exchange.

Part Three: Network Security Practice: Examines the use of cryptographic algorithms 
and security protocols to provide security over networks and the Internet. Topics covered 
include user authentication, e-mail, IP security, and Web security.

Part Four: System Security: Deals with security facilities designed to protect a 
computer system from security threats, including intruders, viruses, and worms. This part 
also looks at firewall technology.

Many of the cryptographic algorithms and network security protocols and applications described in this 
book have been specified as standards. The most important of these are Internet Standards, defined in 
Internet RFCs (Request for Comments), and Federal Information Processing Standards (FIPS), issued by 
the National Institute of Standards and Technology (NIST). Appendix A discusses the standards-making 
process and lists the standards cited in this book.

 
  

file:///D|/1/0131873164/ch00lev1sec1.html [14.10.2007 09:39:56]



Section 0.2.  Roadmap

  
 

[Page 2 (continued)]

0.2. Roadmap

Subject Matter

The material in this book is organized into three broad categories:

Cryptology: This is the study of techniques for ensuring the secrecy and/or authenticity 
of information. The two main branches of cryptology are cryptography, which is the 
study of the design of such techniques; and cryptanalysis, which deals with the 
defeating such techniques, to recover information, or forging information that will be 
accepted as authentic.

[Page 3]

Network security: This area covers the use of cryptographic algorithms in network 
protocols and network applications.

Computer security: In this book, we use this term to refer to the security of computers 
against intruders (e.g., hackers) and malicious software (e.g., viruses). Typically, the 
computer to be secured is attached to a network and the bulk of the threats arise from 
the network.

The first two parts of the book deal with two distinct cryptographic approaches: symmetric cryptographic 
algorithms and public-key, or asymmetric, cryptographic algorithms. Symmetric algorithms make use of 
a single shared key shared by two parties. Public-key algorithms make use of two keys: a private key 
known only to one party, and a public key, available to other parties.

Topic Ordering

This book covers a lot of material. For the instructor or reader who wishes a shorter treatment, there 
are a number of opportunities.

To thoroughly cover the material in the first two parts, the chapters should be read in sequence. With 
the exception of the Advanced Encryption Standard (AES), none of the material in Part One requires 
any special mathematical background. To understand AES, it is necessary to have some understanding 
of finite fields. In turn, an understanding of finite fields requires a basic background in prime numbers 
and modular arithmetic. Accordingly, Chapter 4 covers all of these mathematical preliminaries just prior 
to their use in Chapter 5 on AES. Thus, if Chapter 5 is skipped, it is safe to skip Chapter 4 as well.

Chapter 2 introduces some concepts that are useful in later chapters of Part One. However, for the 
reader whose sole interest is contemporary cryptography, this chapter can be quickly skimmed. The two 
most important symmetric cryptographic algorithms are DES and AES, which are covered in Chapters 3 
and 5, respectively. Chapter 6 covers two other interesting algorithms, both of which enjoy commercial 
use. This chapter can be safely skipped if these algorithms are not of interest.

For Part Two, the only additional mathematical background that is needed is in the area of number 
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theory, which is covered in Chapter 8. The reader who has skipped Chapters 4 and 5 should first review 
the material on Sections 4.1 through 4.3.

The two most widely used general-purpose public-key algorithms are RSA and elliptic curve, with RSA 
enjoying much wider acceptance. The reader may wish to skip the material on elliptic curve 
cryptography in Chapter 10, at least on a first reading. In Chapter 12, Whirlpool and CMAC are of lesser 
importance.

Part Three and Part Four are relatively independent of each other and can be read in either order. 
Both parts assume a basic understanding of the material in Parts One and Two.
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0.3. Internet and Web Resources

There are a number of resources available on the Internet and the Web to support this book and to help 
one keep up with developments in this field.

Web Sites for This Book

A special Web page has been set up for this book at WilliamStallings.com/Crypto/Crypto4e.html. 
The site includes the following:

●     Useful Web sites: There are links to other relevant Web sites, organized by chapter, including 
the sites listed in this section and throughout this book.

●     Errata sheet: An errata list for this book will be maintained and updated as needed. Please e-
mail any errors that you spot to me. Errata sheets for my other books are at WilliamStallings.
com.

●     Figures: All of the figures in this book in PDF (Adobe Acrobat) format.
●     Tables: All of the tables in this book in PDF format.
●     Slides: A set of PowerPoint slides, organized by chapter.
●     Cryptography and network security courses: There are links to home pages for courses 

based on this book; these pages may be useful to other instructors in providing ideas about how 
to structure their course.

I also maintain the Computer Science Student Resource Site, at WilliamStallings.com/
StudentSupport.html. The purpose of this site is to provide documents, information, and links for 
computer science students and professionals. Links and documents are organized into four categories:

●     Math: Includes a basic math refresher, a queuing analysis primer, a number system primer, and 
links to numerous math sites

●     How-to: Advice and guidance for solving homework problems, writing technical reports, and 
preparing technical presentations

●     Research resources: Links to important collections of papers, technical reports, and 
bibliographies

●     Miscellaneous: A variety of other useful documents and links

Other Web Sites

There are numerous Web sites that provide information related to the topics of this book. In subsequent 
chapters, pointers to specific Web sites can be found in the Recommended Reading and Web Sites 
section. Because the addresses for Web sites tend to change frequently, I have not included URLs in the 
book. For all of the Web sites listed in the book, the appropriate link can be found at this book's Web 
site. Other links not mentioned in this book will be added to the Web site over time.

[Page 5]

USENET Newsgroups

A number of USENET newsgroups are devoted to some aspect of cryptography or network security. As 
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with virtually all USENET groups, there is a high noise-to-signal ratio, but it is worth experimenting to 
see if any meet your needs. The most relevant are

●     sci.crypt.research: The best group to follow. This is a moderated newsgroup that deals with 
research topics; postings must have some relationship to the technical aspects of cryptology.

●     sci.crypt: A general discussion of cryptology and related topics.
●     sci.crypt.random-numbers: A discussion of cryptographic-strength random number generators.
●     alt.security: A general discussion of security topics.
●     comp.security.misc: A general discussion of computer security topics.
●     comp.security.firewalls: A discussion of firewall products and technology.
●     comp.security.announce: News, announcements from CERT.
●     comp.risks: A discussion of risks to the public from computers and users.
●     comp.virus: A moderated discussion of computer viruses.
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The combination of space, time, and strength that must be considered as the basic 
elements of this theory of defense makes this a fairly complicated matter. Consequently, 
it is not easy to find a fixed point of departure.

On War, Carl Von Clausewitz

Key Points

●     The OSI (open systems interconnection) security architecture provides a systematic 
framework for defining security attacks, mechanisms, and services.

●     Security attacks are classified as either passive attacks, which include 
unauthorized reading of a message of file and traffic analysis; and active attacks, 
such as modification of messages or files, and denial of service.

●     A security mechanism is any process (or a device incorporating such a process) 
that is designed to detect, prevent, or recover from a security attack. Examples of 
mechanisms are encryption algorithms, digital signatures, and authentication 
protocols.

●     Security services include authentication, access control, data confidentiality, data 
integrity, nonrepudiation, and availability.

 
The requirements of information security within an organization have undergone two major changes 
in the last several decades. Before the widespread use of data processing equipment, the security of 
information felt to be valuable to an organization was provided primarily by physical and administrative 
means. An example of the former is the use of rugged filing cabinets with a combination lock for storing 
sensitive documents. An example of the latter is personnel screening procedures used during the hiring 
process.

With the introduction of the computer, the need for automated tools for protecting files and other 
information stored on the computer became evident. This is especially the case for a shared system, 
such as a time-sharing system, and the need is even more acute for systems that can be accessed over 
a public telephone network, data network, or the Internet. The generic name for the collection of tools 
designed to protect data and to thwart hackers is computer security.

The second major change that affected security is the introduction of distributed systems and the use of 
networks and communications facilities for carrying data between terminal user and computer and 
between computer and computer. Network security measures are needed to protect data during their 
transmission. In fact, the term network security is somewhat misleading, because virtually all 
business, government, and academic organizations interconnect their data processing equipment with a 

collection of interconnected networks. Such a collection is often referred to as an internet,
[1]

 and the 
term internet security is used.

[1] We use the term internet, with a lowercase "i," to refer to any interconnected collection of networks. A corporate intranet is 
an example of an internet. The Internet with a capital "I" may be one of the facilities used by an organization to construct its 
internet.

[Page 8]
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There are no clear boundaries between these two forms of security. For example, one of the most 
publicized types of attack on information systems is the computer virus. A virus may be introduced into 
a system physically when it arrives on a diskette or optical disk and is subsequently loaded onto a 
computer. Viruses may also arrive over an internet. In either case, once the virus is resident on a 
computer system, internal computer security tools are needed to detect and recover from the virus.

This book focuses on internet security, which consists of measures to deter, prevent, detect, and correct 
security violations that involve the transmission of information. That is a broad statement that covers a 
host of possibilities. To give you a feel for the areas covered in this book, consider the following 
examples of security violations:

1.  

User A transmits a file to user B. The file contains sensitive information (e.g., payroll records) 
that is to be protected from disclosure. User C, who is not authorized to read the file, is able to 
monitor the transmission and capture a copy of the file during its transmission.

2.  

A network manager, D, transmits a message to a computer, E, under its management. The 
message instructs computer E to update an authorization file to include the identities of a 
number of new users who are to be given access to that computer. User F intercepts the 
message, alters its contents to add or delete entries, and then forwards the message to E, which 
accepts the message as coming from manager D and updates its authorization file accordingly.

3.  

Rather than intercept a message, user F constructs its own message with the desired entries and 
transmits that message to E as if it had come from manager D. Computer E accepts the message 
as coming from manager D and updates its authorization file accordingly.

4.  

An employee is fired without warning. The personnel manager sends a message to a server 
system to invalidate the employee's account. When the invalidation is accomplished, the server 
is to post a notice to the employee's file as confirmation of the action. The employee is able to 
intercept the message and delay it long enough to make a final access to the server to retrieve 
sensitive information. The message is then forwarded, the action taken, and the confirmation 
posted. The employee's action may go unnoticed for some considerable time.

5.  

A message is sent from a customer to a stockbroker with instructions for various transactions. 
Subsequently, the investments lose value and the customer denies sending the message.

Although this list by no means exhausts the possible types of security violations, it illustrates the range 
of concerns of network security.

[Page 9]

Internetwork security is both fascinating and complex. Some of the reasons follow:
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Security involving communications and networks is not as simple as it might first appear to the 
novice. The requirements seem to be straightforward; indeed, most of the major requirements 
for security services can be given self-explanatory one-word labels: confidentiality, 
authentication, nonrepudiation, integrity. But the mechanisms used to meet those requirements 
can be quite complex, and understanding them may involve rather subtle reasoning.

2.  

In developing a particular security mechanism or algorithm, one must always consider potential 
attacks on those security features. In many cases, successful attacks are designed by looking at 
the problem in a completely different way, therefore exploiting an unexpected weakness in the 
mechanism.

3.  

Because of point 2, the procedures used to provide particular services are often counterintuitive: 
It is not obvious from the statement of a particular requirement that such elaborate measures 
are needed. It is only when the various countermeasures are considered that the measures used 
make sense.

4.  

Having designed various security mechanisms, it is necessary to decide where to use them. This 
is true both in terms of physical placement (e.g., at what points in a network are certain security 
mechanisms needed) and in a logical sense [e.g., at what layer or layers of an architecture such 
as TCP/IP (Transmission Control Protocol/Internet Protocol) should mechanisms be placed].

5.  

Security mechanisms usually involve more than a particular algorithm or protocol. They usually 
also require that participants be in possession of some secret information (e.g., an encryption 
key), which raises questions about the creation, distribution, and protection of that secret 
information. There is also a reliance on communications protocols whose behavior may 
complicate the task of developing the security mechanism. For example, if the proper functioning 
of the security mechanism requires setting time limits on the transit time of a message from 
sender to receiver, then any protocol or network that introduces variable, unpredictable delays 
may render such time limits meaningless.

Thus, there is much to consider. This chapter provides a general overview of the subject matter that 
structures the material in the remainder of the book. We begin with a general discussion of network 
security services and mechanisms and of the types of attacks they are designed for. Then we develop a 
general overall model within which the security services and mechanisms can be viewed.
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1.1. Security Trends

In 1994, the Internet Architecture Board (IAB) issued a report entitled "Security in the Internet 
Architecture" (RFC 1636). The report stated the general consensus that the Internet needs more and 
better security, and it identified key areas for security mechanisms. Among these were the need to 
secure the network infrastructure from unauthorized monitoring and control of network traffic and the 
need to secure end-user-to-end-user traffic using authentication and encryption mechanisms.

[Page 10]

These concerns are fully justified. As confirmation, consider the trends reported by the Computer 
Emergency Response Team (CERT) Coordination Center (CERT/CC). Figure 1.1a shows the trend in 
Internet-related vulnerabilities reported to CERT over a 10-year period. These include security 
weaknesses in the operating systems of attached computers (e.g., Windows, Linux) as well as 
vulnerabilities in Internet routers and other network devices. Figure 1.1b shows the number of security-
related incidents reported to CERT. These include denial of service attacks; IP spoofing, in which 
intruders create packets with false IP addresses and exploit applications that use authentication based 
on IP; and various forms of eavesdropping and packet sniffing, in which attackers read transmitted 
information, including logon information and database contents.

[Page 11]

Figure 1.1. CERT Statistics

(This item is displayed on page 10 in the print version) 

[View full size image]
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Over time, the attacks on the Internet and Internet-attached systems have grown more sophisticated 
while the amount of skill and knowledge required to mount an attack has declined (Figure 1.2). Attacks 
have become more automated and can cause greater amounts of damage.

Figure 1.2. Trends in Attack Sophistication and Intruder Knowledge
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[View full size image]

 
This increase in attacks coincides with an increased use of the Internet and with increases in the 
complexity of protocols, applications, and the Internet itself. Critical infrastructures increasingly rely on 
the Internet for operations. Individual users rely on the security of the Internet, email, the Web, and 
Web-based applications to a greater extent than ever. Thus, a wide range of technologies and tools are 
needed to counter the growing threat. At a basic level, cryptographic algorithms for confidentiality and 
authentication assume greater importance. As well, designers need to focus on Internet-based protocols 
and the vulnerabilities of attached operating systems and applications. This book surveys all of these 
technical areas.
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1.2. The OSI Security Architecture

To assess effectively the security needs of an organization and to evaluate and choose various security 
products and policies, the manager responsible for security needs some systematic way of defining the 
requirements for security and characterizing the approaches to satisfying those requirements. This is 
difficult enough in a centralized data processing environment; with the use of local and wide area 
networks, the problems are compounded.

ITU-T
[2]

 Recommendation X.800, Security Architecture for OSI, defines such a systematic approach.
[3]

 
The OSI security architecture is useful to managers as a way of organizing the task of providing 
security. Furthermore, because this architecture was developed as an international standard, computer 
and communications vendors have developed security features for their products and services that 
relate to this structured definition of services and mechanisms.

[2] The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T) is a United 
Nationssponsored agency that develops standards, called Recommendations, relating to telecommunications and to open 
systems interconnection (OSI).

[3] The OSI security architecture was developed in the context of the OSI protocol architecture, which is described in Appendix 
H. However, for our purposes in this chapter, an understanding of the OSI protocol architecture is not required.

For our purposes, the OSI security architecture provides a useful, if abstract, overview of many of the 
concepts that this book deals with. The OSI security architecture focuses on security attacks, 
mechanisms, and services. These can be defined briefly as follows:

●     Security attack: Any action that compromises the security of information owned by an 
organization.

●     Security mechanism: A process (or a device incorporating such a process) that is designed to 
detect, prevent, or recover from a security attack.

●     Security service: A processing or communication service that enhances the security of the data 
processing systems and the information transfers of an organization. The services are intended 
to counter security attacks, and they make use of one or more security mechanisms to provide 
the service.

In the literature, the terms threat and attack are commonly used to mean more or less the same thing. 
Table 1.1 provides definitions taken from RFC 2828, Internet Security Glossary.

Table 1.1. Threats and Attacks (RFC 2828)

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action, or 
event that could breach security and cause harm. That is, a threat is a possible danger that might 
exploit a vulnerability.

Attack
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An assault on system security that derives from an intelligent threat; that is, an intelligent act that is 
a deliberate attempt (especially in the sense of a method or technique) to evade security services and 
violate the security policy of a system.
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1.3. Security Attacks

A useful means of classifying security attacks, used both in X.800 and RFC 2828, is in terms of passive 
attacks and active attacks. A passive attack attempts to learn or make use of information from the 
system but does not affect system resources. An active attack attempts to alter system resources or 
affect their operation.

Passive Attacks

Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal of the 
opponent is to obtain information that is being transmitted. Two types of passive attacks are release of 
message contents and traffic analysis.

The release of message contents is easily understood (Figure 1.3a). A telephone conversation, an 
electronic mail message, and a transferred file may contain sensitive or confidential information. We 
would like to prevent an opponent from learning the contents of these transmissions.

Figure 1.3. Passive Attacks

(This item is displayed on page 14 in the print version) 

[View full size image]
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A second type of passive attack, traffic analysis, is subtler (Figure 1.3b). Suppose that we had a way 
of masking the contents of messages or other information traffic so that opponents, even if they 
captured the message, could not extract the information from the message. The common technique for 
masking contents is encryption. If we had encryption protection in place, an opponent might still be able 
to observe the pattern of these messages. The opponent could determine the location and identity of 
communicating hosts and could observe the frequency and length of messages being exchanged. This 
information might be useful in guessing the nature of the communication that was taking place.

Passive attacks are very difficult to detect because they do not involve any alteration of the data. 
Typically, the message traffic is sent and received in an apparently normal fashion and neither the 
sender nor receiver is aware that a third party has read the messages or observed the traffic pattern. 
However, it is feasible to prevent the success of these attacks, usually by means of encryption. Thus, 
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the emphasis in dealing with passive attacks is on prevention rather than detection.

Active Attacks

Active attacks involve some modification of the data stream or the creation of a false stream and can be 
subdivided into four categories: masquerade, replay, modification of messages, and denial of service.

A masquerade takes place when one entity pretends to be a different entity (Figure 1.4a). A 
masquerade attack usually includes one of the other forms of active attack. For example, authentication 
sequences can be captured and replayed after a valid authentication sequence has taken place, thus 
enabling an authorized entity with few privileges to obtain extra privileges by impersonating an entity 
that has those privileges.

Figure 1.4. Active Attacks

(This item is displayed on pages 15 - 16 in the print version) 

[View full size image]
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Replay involves the passive capture of a data unit and its subsequent retransmission to produce an 
unauthorized effect (Figure 1.4b).

[Page 14]
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Modification of messages simply means that some portion of a legitimate message is altered, or that 
messages are delayed or reordered, to produce an unauthorized effect (Figure 1.4c). For example, a 
message meaning "Allow John Smith to read confidential file accounts" is modified to mean "Allow Fred 
Brown to read confidential file accounts."

The denial of service prevents or inhibits the normal use or management of communications facilities 
(Figure 1.4d). This attack may have a specific target; for example, an entity may suppress all messages 
directed to a particular destination (e.g., the security audit service). Another form of service denial is 
the disruption of an entire network, either by disabling the network or by overloading it with messages 
so as to degrade performance.

[Page 15]

Active attacks present the opposite characteristics of passive attacks. Whereas passive attacks are 
difficult to detect, measures are available to prevent their success. On the other hand, it is quite difficult 
to prevent active attacks absolutely, because of the wide variety of potential physical, software, and 
network vulnerabilities. Instead, the goal is to detect active attacks and to recover from any disruption 
or delays caused by them. If the detection has a deterrent effect, it may also contribute to prevention.
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1.4. Security Services

X.800 defines a security service as a service provided by a protocol layer of communicating open 
systems, which ensures adequate security of the systems or of data transfers. Perhaps a clearer 
definition is found in RFC 2828, which provides the following definition: a processing or communication 
service that is provided by a system to give a specific kind of protection to system resources; security 
services implement security policies and are implemented by security mechanisms.

[Page 17]

X.800 divides these services into five categories and fourteen specific services (Table 1.2). We look at 

each category in turn.
[4]

[4] There is no universal agreement about many of the terms used in the security literature. For example, the term integrity is 
sometimes used to refer to all aspects of information security. The term authentication is sometimes used to refer both to 
verification of identity and to the various functions listed under integrity in this chapter. Our usage here agrees with both X.800 
and RFC 2828.

Table 1.2. Security Services (X.800)

AUTHENTICATION

The assurance that the communicating entity is the one that it claims to be.

Peer Entity Authentication

Used in association with a logical connection to provide confidence in the identity of the entities 
connected.

Data Origin Authentication

In a connectionless transfer, provides assurance that the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource (i.e., this service controls who can 
have access to a resource, under what conditions access can occur, and what those 
accessing the resource are allowed to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized disclosure.
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Connection Confidentiality

The protection of all user data on a connection.

Connectionless Confidentiality

The protection of all user data in a single data block

Selective-Field Confidentiality

The confidentiality of selected fields within the user data on a connection or in a single data block.

Traffic Flow Confidentiality

The protection of the information that might be derived from observation of traffic flows.

DATA INTEGRITY

The assurance that data received are exactly as sent by an authorized entity (i.e., 
contain no modification, insertion, deletion, or replay).

Connection Integrity with Recovery

Provides for the integrity of all user data on a connection and detects any modification, insertion, 
deletion, or replay of any data within an entire data sequence, with recovery attempted.

Connection Integrity without Recovery

As above, but provides only detection without recovery.

Selective-Field Connection Integrity

Provides for the integrity of selected fields within the user data of a data block transferred over a 
connection and takes the form of determination of whether the selected fields have been modified, 
inserted, deleted, or replayed.

Connectionless Integrity

Provides for the integrity of a single connectionless data block and may take the form of detection of 
data modification. Additionally, a limited form of replay detection may be provided.

Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a single connectionless data block; takes the form of 
determination of whether the selected fields have been modified.

NONREPUDIATION

Provides protection against denial by one of the entities involved in a communication of 
having participated in all or part of the communication.

Nonrepudiation, Origin

Proof that the message was sent by the specified party.

Nonrepudiation, Destination

Proof that the message was received by the specified party.
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Authentication

The authentication service is concerned with assuring that a communication is authentic. In the case of 
a single message, such as a warning or alarm signal, the function of the authentication service is to 
assure the recipient that the message is from the source that it claims to be from. In the case of an 
ongoing interaction, such as the connection of a terminal to a host, two aspects are involved. First, at 
the time of connection initiation, the service assures that the two entities are authentic, that is, that 
each is the entity that it claims to be. Second, the service must assure that the connection is not 
interfered with in such a way that a third party can masquerade as one of the two legitimate parties for 
the purposes of unauthorized transmission or reception.

Two specific authentication services are defined in X.800:

●     Peer entity authentication: Provides for the corroboration of the identity of a peer entity in an 
association. It is provided for use at the establishment of, or at times during the data transfer 
phase of, a connection. It attempts to provide confidence that an entity is not performing either 
a masquerade or an unauthorized replay of a previous connection.

●     Data origin authentication: Provides for the corroboration of the source of a data unit. It does 
not provide protection against the duplication or modification of data units. This type of service 
supports applications like electronic mail where there are no prior interactions between the 
communicating entities.

Access Control

In the context of network security, access control is the ability to limit and control the access to host 
systems and applications via communications links. To achieve this, each entity trying to gain access 
must first be identified, or authenticated, so that access rights can be tailored to the individual.

Data Confidentiality

Confidentiality is the protection of transmitted data from passive attacks. With respect to the content of 
a data transmission, several levels of protection can be identified. The broadest service protects all user 
data transmitted between two users over a period of time. For example, when a TCP connection is set 
up between two systems, this broad protection prevents the release of any user data transmitted over 
the TCP connection. Narrower forms of this service can also be defined, including the protection of a 
single message or even specific fields within a message. These refinements are less useful than the 
broad approach and may even be more complex and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from analysis. This requires that an 
attacker not be able to observe the source and destination, frequency, length, or other characteristics of 
the traffic on a communications facility.

Data Integrity

As with confidentiality, integrity can apply to a stream of messages, a single message, or selected fields 
within a message. Again, the most useful and straightforward approach is total stream protection.
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A connection-oriented integrity service, one that deals with a stream of messages, assures that 
messages are received as sent, with no duplication, insertion, modification, reordering, or replays. The 
destruction of data is also covered under this service. Thus, the connection-oriented integrity service 
addresses both message stream modification and denial of service. On the other hand, a connectionless 
integrity service, one that deals with individual messages without regard to any larger context, generally 
provides protection against message modification only.

We can make a distinction between the service with and without recovery. Because the integrity service 
relates to active attacks, we are concerned with detection rather than prevention. If a violation of 
integrity is detected, then the service may simply report this violation, and some other portion of 
software or human intervention is required to recover from the violation. Alternatively, there are 
mechanisms available to recover from the loss of integrity of data, as we will review subsequently. The 
incorporation of automated recovery mechanisms is, in general, the more attractive alternative.

Nonrepudiation

Nonrepudiation prevents either sender or receiver from denying a transmitted message. Thus, when a 
message is sent, the receiver can prove that the alleged sender in fact sent the message. Similarly, 
when a message is received, the sender can prove that the alleged receiver in fact received the message.

Availability Service

Both X.800 and RFC 2828 define availability to be the property of a system or a system resource being 
accessible and usable upon demand by an authorized system entity, according to performance 
specifications for the system (i.e., a system is available if it provides services according to the system 
design whenever users request them). A variety of attacks can result in the loss of or reduction in 
availability. Some of these attacks are amenable to automated countermeasures, such as authentication 
and encryption, whereas others require some sort of physical action to prevent or recover from loss of 
availability of elements of a distributed system.

X.800 treats availability as a property to be associated with various security services. However, it makes 
sense to call out specifically an availability service. An availability service is one that protects a system 
to ensure its availability. This service addresses the security concerns raised by denial-of-service 
attacks. It depends on proper management and control of system resources and thus depends on access 
control service and other security services.

 
  

file:///D|/1/0131873164/ch01lev1sec4.html (4 von 4) [14.10.2007 09:39:59]



Section 1.5.  Security Mechanisms

  
 

[Page 19 (continued)]

1.5. Security Mechanisms

Table 1.3 lists the security mechanisms defined in X.800. As can be seen the mechanisms are divided into those that are 
implemented in a specific protocol layer and those that are not specific to any particular protocol layer or security service. 
These mechanisms will be covered in the appropriate places in the book and so we do not elaborate now, except to comment 
on the definition of encipherment. X.800 distinguishes between reversible encipherment mechanisms and irreversible 
encipherment mechanisms. A reversible encipherment mechanism is simply an encryption algorithm that allows data to be 
encrypted and subsequently decrypted. Irreversible encipherment mechanisms include hash algorithms and message 
authentication codes, which are used in digital signature and message authentication applications.

[Page 20]

Table 1.3. Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

May be incorporated into the appropriate protocol layer in order to provide some of the OSI security services.

Encipherment

The use of mathematical algorithms to transform data into a form that is not readily intelligible. The transformation and 
subsequent recovery of the data depend on an algorithm and zero or more encryption keys.

Digital Signature

Data appended to, or a cryptographic transformation of, a data unit that allows a recipient of the data unit to prove the 
source and integrity of the data unit and protect against forgery (e.g., by the recipient).

Access Control

A variety of mechanisms that enforce access rights to resources.

Data Integrity

A variety of mechanisms used to assure the integrity of a data unit or stream of data units.

Authentication Exchange

A mechanism intended to ensure the identity of an entity by means of information exchange.

Traffic Padding

The insertion of bits into gaps in a data stream to frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure routes for certain data and allows routing changes, especially when a 
breach of security is suspected.

Notarization

The use of a trusted third party to assure certain properties of a data exchange.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular OSI security service or protocol layer.

Trusted Functionality

That which is perceived to be correct with respect to some criteria (e.g., as established by a security policy).
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Security Label

The marking bound to a resource (which may be a data unit) that names or designates the security attributes of that 
resource.

Event Detection

Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a security audit, which is an independent review and examination of system 
records and activities.

Security Recovery

Deals with requests from mechanisms, such as event handling and management functions, and takes recovery actions.

 
Table 1.4, based on one in X.800, indicates the relationship between security services and security mechanisms.

[Page 21]

Table 1.4. Relationship between Security Services and Mechanisms

Mechanism

Service Encipherment
Digital 
Signature

Access 
Control

Data 
Integrity

Authentication 
Exchange

Traffic 
Padding

Routing 
Control Notarization

Peer entity 
authentication

Y Y   Y    

Data origin 
authentication

Y Y       

Access control   Y      

Confidentiality Y      Y  

Traffic flow 
confidentiality

Y     Y Y  

Data integrity Y Y  Y     

Nonrepudiation  Y  Y    Y

Availability    Y Y    
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1.6. A Model for Network Security

A model for much of what we will be discussing is captured, in very general terms, in Figure 1.5. A 
message is to be transferred from one party to another across some sort of internet. The two parties, 
who are the principals in this transaction, must cooperate for the exchange to take place. A logical 
information channel is established by defining a route through the internet from source to destination 
and by the cooperative use of communication protocols (e.g., TCP/IP) by the two principals.

Figure 1.5. Model for Network Security

[View full size image]

 
Security aspects come into play when it is necessary or desirable to protect the information transmission 
from an opponent who may present a threat to confidentiality, authenticity, and so on. All the 
techniques for providing security have two components:

●     A security-related transformation on the information to be sent. Examples include the encryption 
of the message, which scrambles the message so that it is unreadable by the opponent, and the 
addition of a code based on the contents of the message, which can be used to verify the identity 
of the sender

●     Some secret information shared by the two principals and, it is hoped, unknown to the opponent. 
An example is an encryption key used in conjunction with the transformation to scramble the 

message before transmission and unscramble it on reception.
[5]

[5] Part Two discusses a form of encryption, known as public-key encryption, in which only one of the two principals 
needs to have the secret information.
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A trusted third party may be needed to achieve secure transmission. For example, a third party may be 
responsible for distributing the secret information to the two principals while keeping it from any 
opponent. Or a third party may be needed to arbitrate disputes between the two principals concerning 
the authenticity of a message transmission.

This general model shows that there are four basic tasks in designing a particular security service:

1.  

Design an algorithm for performing the security-related transformation. The algorithm should be 
such that an opponent cannot defeat its purpose.

2.  

Generate the secret information to be used with the algorithm.

3.  

Develop methods for the distribution and sharing of the secret information.

4.  

Specify a protocol to be used by the two principals that makes use of the security algorithm and 
the secret information to achieve a particular security service.

Parts One through Three of this book concentrates on the types of security mechanisms and services 
that fit into the model shown in Figure 1.5. However, there are other security-related situations of 
interest that do not neatly fit this model but that are considered in this book. A general model of these 
other situations is illustrated by Figure 1.6, which reflects a concern for protecting an information 
system from unwanted access. Most readers are familiar with the concerns caused by the existence of 
hackers, who attempt to penetrate systems that can be accessed over a network. The hacker can be 
someone who, with no malign intent, simply gets satisfaction from breaking and entering a computer 
system. Or, the intruder can be a disgruntled employee who wishes to do damage, or a criminal who 
seeks to exploit computer assets for financial gain (e.g., obtaining credit card numbers or performing 
illegal money transfers).

Figure 1.6. Network Access Security Model

[View full size image]
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Another type of unwanted access is the placement in a computer system of logic that exploits 
vulnerabilities in the system and that can affect application programs as well as utility programs, such 
as editors and compilers. Programs can present two kinds of threats:

●     Information access threats intercept or modify data on behalf of users who should not have 
access to that data.

●     Service threats exploit service flaws in computers to inhibit use by legitimate users.

[Page 24]

Viruses and worms are two examples of software attacks. Such attacks can be introduced into a system 
by means of a disk that contains the unwanted logic concealed in otherwise useful software. They can 
also be inserted into a system across a network; this latter mechanism is of more concern in network 
security.

The security mechanisms needed to cope with unwanted access fall into two broad categories (see 
Figure 1.6). The first category might be termed a gatekeeper function. It includes password-based login 
procedures that are designed to deny access to all but authorized users and screening logic that is 
designed to detect and reject worms, viruses, and other similar attacks. Once either an unwanted user 
or unwanted software gains access, the second line of defense consists of a variety of internal controls 
that monitor activity and analyze stored information in an attempt to detect the presence of unwanted 
intruders. These issues are explored in Part Four.
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1.7. Recommended Reading and Web Sites

[PFLE02] provides a good introduction to both computer and network security. Two other excellent 
surveys are [PIEP03] and [BISH05]. [BISH03] covers much the same ground as [BISH05] but with more 
mathematical detail and rigor. [SCHN00] is valuable reading for any practitioner in the field of computer 
or network security: it discusses the limitations of technology, and cryptography in particular, in 
providing security, and the need to consider the hardware, the software implementation, the networks, 
and the people involved in providing and attacking security.

BISH03 Bishop, M. Computer Security: Art and Science. Boston: Addison-Wesley, 
2003.

BISH05 Bishop, M. Introduction to Computer Security. Boston: Addison-Wesley, 2005.

PFLE02 Pfleeger, C. Security in Computing. Upper Saddle River, NJ: Prentice Hall, 
2002.

PIEP03 Pieprzyk, J.; Hardjono, T.; and Seberry, J. Fundamentals of Computer 
Security. New York: Springer-Verlag, 2003.

SCHN00 Schneier, B. Secrets and Lies: Digital Security in a Networked World. New 
York: Wiley 2000.

 
Recommended Web Sites

The following Web sites
[6]

 are of general interest related to cryptography and network security:

[6] Because URLs sometimes change, they are not included. For all of the Web sites listed in this and subsequent chapters, 
the appropriate link is at this book's Web site at williamstallings.com/Crypto/Crypto4e.html.

●     COAST: Comprehensive set of links related to cryptography and network security.
●     IETF Security Area: Material related to Internet security standardization efforts.
●     Computer and Network Security Reference Index: A good index to vendor and commercial 

products, FAQs, newsgroup archives, papers, and other Web sites.

[Page 25]
●     The Cryptography FAQ: Lengthy and worthwhile FAQ covering all aspects of cryptography.
●     Tom Dunigan's Security Page: An excellent list of pointers to cryptography and network 

security Web sites.

file:///D|/1/0131873164/ch01lev1sec7.html (1 von 2) [14.10.2007 09:40:01]

http://williamstallings.com/Crypto/Crypto4e.html


Section 1.7.  Recommended Reading and Web Sites

●     Helgar Lipma's Cryptology Pointers: Another excellent list of pointers to cryptography and 
network security Web sites.

●     IEEE Technical Committee on Security and Privacy: Copies of their newsletter, information 
on IEEE-related activities.

●     Computer Security Resource Center: Maintained by the National Institute of Standards and 
Technology (NIST); contains a broad range of information on security threats, technology, and 
standards.

●     Security Focus: A wide variety of security information, with an emphasis on vendor products 
and end-user concerns.

●     SANS Institute: Similar to Security Focus. Extensive collection of white papers.
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1.8. Key Terms, Review Questions, and Problems

Key Terms

access control

active threat

authentication

authenticity

availability

data confidentiality

data integrity

denial of service

encryption

integrity

intruder

masquerade

nonrepudiation

OSI security architecture

passive threat

replay

security attacks

security mechanisms

security services
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traffic analysis

Review Questions

1.1 What is the OSI security architecture?

1.2 What is the difference between passive and active security threats?

1.3 List and briefly define categories of passive and active security attacks.

1.4 List and briefly define categories of security services.

1.5 List and briefly define categories of security mechanisms.

Problems

1.1 Draw a matrix similar to Table 1.4 that shows the relationship between security 
services and attacks.

1.2 Draw a matrix similar to Table 1.4 that shows the relationship between security 
mechanisms and attacks.
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Part One: Symmetric Ciphers

Cryptography is probably the most important aspect of communications 
security and is becoming increasingly important as a basic building block 
for computer security.

Computers at Risk: Safe Computing in the Information Age, National 
Research Council, 1991

The increased use of computer and communications systems by industry 
has increased the risk of theft of proprietary information. Although these 
threats may require a variety of countermeasures, encryption is a primary 
method of protecting valuable electronic information.

Communications Privacy: Federal Policy and Actions, General Accounting 
Office Report GAO/OSI-94-2, November 1993

By far the most important automated tool for network and communications security is 
encryption. Two forms of encryption are in common use: conventional, or symmetric, 
encryption and public-key, or asymmetric, encryption. Part One provides a survey of the 
basic principles of symmetric encryption, looks at widely used algorithms, and discusses 
applications of symmetric cryptography.

Road Map for Part One

Chapter 2: Classical Encryption Techniques

Chapter 2 describes classical symmetric encryption techniques. It provides a 
gentle and interesting introduction to cryptography and cryptanalysis and 
highlights important concepts.

[Page 27]

Chapter 3: Block Ciphers and the Data Encryption Standard

Chapter 3 introduces the principles of modern symmetric cryptography, with 
an emphasis on the most widely used encryption technique, the Data 
Encryption Standard (DES). The chapter includes a discussion of design 
considerations and cryptanalysis and introduces the Feistel cipher, which is 
the basic structure of most modern symmetric encryption schemes.

Chapter 4: Finite Fields

Finite fields have become increasingly important in cryptography. A number of 
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cryptographic algorithms rely heavily on properties of finite fields, notably the 
Advanced Encryption Standard (AES) and elliptic curve cryptography. This 
chapter is positioned here so that concepts relevant to AES can be introduced 
prior to the discussion of AES. Chapter 4 provides the necessary background 

to the understanding of arithmetic over finite fields of the form GF(2n).

Chapter 5: Advanced Encryption Standard

The most important development in cryptography in recent years is the 
adoption of a new symmetric cipher standard, AES. Chapter 5 provides a 
thorough discussion of this cipher.

Chapter 6: More on Symmetric Ciphers

Chapter 6 explores additional topics related to symmetric ciphers. The chapter 
begins by examining multiple encryption and, in particular, triple DES. Next, 
we look at the concept of block cipher modes of operation, which deal with 
ways of handling plaintext longer than a single block. Finally, the chapter 
discusses stream ciphers and describes RC4.

Chapter 7: Confidentiality Using Symmetric Encryption

Beyond questions dealing with the actual construction of a symmetric 
encryption algorithm, a number of design issues relate to the use of 
symmetric encryption to provide confidentiality. Chapter 7 surveys the most 
important of these issues. The chapter includes a discussion of end-to-end 
versus link encryption, techniques for achieving traffic confidentiality, and key 
distribution techniques. An important related topic, random number 
generation, is also addressed.
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Chapter 2. Classical Encryption Techniques

2.1 Symmetric Cipher Model

Cryptography

Cryptanalysis

2.2 Substitution Techniques

Caesar Cipher

Monoalphabetic Ciphers

Playfair Cipher

Hill Cipher

Polyalphabetic Ciphers

One-Time Pad

2.3 Transposition Techniques

2.4 Rotor Machines

2.5 Steganography

2.6 Recommended Reading and Web Sites

2.7 Key Terms, Review Questions, and Problems

Key Terms

Review Questions

Problems
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Many savages at the present day regard their names as vital parts of themselves, and 
therefore take great pains to conceal their real names, lest these should give to evil-
disposed persons a handle by which to injure their owners.

The Golden Bough, Sir James George Frazer

Key Points

●     Symmetric encryption is a form of cryptosystem in which encryption and decryption 
are performed using the same key. It is also known as conventional encryption.

●     Symmetric encryption transforms plaintext into ciphertext using a secret key and an 
encryption algorithm. Using the same key and a decryption algorithm, the plaintext 
is recovered from the ciphertext.

●     The two types of attack on an encryption algorithm are cryptanalysis, based on 
properties of the encryption algorithm, and brute-force, which involves trying all 
possible keys.

●     Traditional (precomputer) symmetric ciphers use substitution and/or transposition 
techniques. Substitution techniques map plaintext elements (characters, bits) into 
ciphertext elements. Transposition techniques systematically transpose the 
positions of plaintext elements.

●     Rotor machines are sophisticated precomputer hardware devices that use 
substitution techniques.

●     Steganography is a technique for hiding a secret message within a larger one in 
such a way that others cannot discern the presence or contents of the hidden 
message.

 
Symmetric encryption, also referred to as conventional encryption or single-key encryption, was the only 
type of encryption in use prior to the development of public-key encryption in the 1970s. It remains by 
far the most widely used of the two types of encryption. Part One examines a number of symmetric 
ciphers. In this chapter, we begin with a look at a general model for the symmetric encryption process; 
this will enable us to understand the context within which the algorithms are used. Next, we examine a 
variety of algorithms in use before the computer era. Finally, we look briefly at a different approach 
known as steganography. Chapter 3 examines the most widely used symmetric cipher: DES.

Before beginning, we define some terms. An original message is known as the plaintext, while the 
coded message is called the ciphertext. The process of converting from plaintext to ciphertext is known 
as enciphering or encryption; restoring the plaintext from the ciphertext is deciphering or 
decryption. The many schemes used for encryption constitute the area of study known as 
cryptography. Such a scheme is known as a cryptographic system or a cipher. Techniques used for 
deciphering a message without any knowledge of the enciphering details fall into the area of 
cryptanalysis. Cryptanalysis is what the layperson calls "breaking the code." The areas of cryptography 
and cryptanalysis together are called cryptology.

[Page 30]
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2.1. Symmetric Cipher Model

A symmetric encryption scheme has five ingredients (Figure 2.1):

●     Plaintext: This is the original intelligible message or data that is fed into the algorithm as input.
●     Encryption algorithm: The encryption algorithm performs various substitutions and 

transformations on the plaintext.
●     Secret key: The secret key is also input to the encryption algorithm. The key is a value 

independent of the plaintext and of the algorithm. The algorithm will produce a different output 
depending on the specific key being used at the time. The exact substitutions and 
transformations performed by the algorithm depend on the key.

●     Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and 
the secret key. For a given message, two different keys will produce two different ciphertexts. 
The ciphertext is an apparently random stream of data and, as it stands, is unintelligible.

●     Decryption algorithm: This is essentially the encryption algorithm run in reverse. It takes the 
ciphertext and the secret key and produces the original plaintext.

Figure 2.1. Simplified Model of Conventional Encryption

[View full size image]

 
There are two requirements for secure use of conventional encryption:

1.  

We need a strong encryption algorithm. At a minimum, we would like the algorithm to be such 
that an opponent who knows the algorithm and has access to one or more ciphertexts would be 
unable to decipher the ciphertext or figure out the key. This requirement is usually stated in a 
stronger form: The opponent should be unable to decrypt ciphertext or discover the key even if 
he or she is in possession of a number of ciphertexts together with the plaintext that produced 
each ciphertext.

[Page 31]
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Sender and receiver must have obtained copies of the secret key in a secure fashion and must 
keep the key secure. If someone can discover the key and knows the algorithm, all 
communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the ciphertext plus knowledge of 
the encryption/decryption algorithm. In other words, we do not need to keep the algorithm secret; we 
need to keep only the key secret. This feature of symmetric encryption is what makes it feasible for 
widespread use. The fact that the algorithm need not be kept secret means that manufacturers can and 
have developed low-cost chip implementations of data encryption algorithms. These chips are widely 
available and incorporated into a number of products. With the use of symmetric encryption, the 
principal security problem is maintaining the secrecy of the key.

Let us take a closer look at the essential elements of a symmetric encryption scheme, using Figure 2.2. 
A source produces a message in plaintext, X = [X1, X2, ..., XM]. The M elements of X are letters in some 

finite alphabet. Traditionally, the alphabet usually consisted of the 26 capital letters. Nowadays, the 
binary alphabet {0, 1} is typically used. For encryption, a key of the form K = [K1, K2, ..., KJ] is 

generated. If the key is generated at the message source, then it must also be provided to the 
destination by means of some secure channel. Alternatively, a third party could generate the key and 
securely deliver it to both source and destination.

Figure 2.2. Model of Conventional Cryptosystem

[View full size image]

 
With the message X and the encryption key K as input, the encryption algorithm forms the ciphertext Y 
= [Y1, Y2, ..., YN]. We can write this as

Y = E(K, X)
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This notation indicates that Y is produced by using encryption algorithm E as a function of the plaintext 
X, with the specific function determined by the value of the key K.

The intended receiver, in possession of the key, is able to invert the transformation:

X = D(K, Y)

An opponent, observing Y but not having access to K or X, may attempt to recover X or K or both X and 
K. It is assumed that the opponent knows the encryption (E) and decryption (D) algorithms. If the 
opponent is interested in only this particular message, then the focus of the effort is to recover X by 

generating a plaintext estimate . Often, however, the opponent is interested in being able to read 

future messages as well, in which case an attempt is made to recover K by generating an estimate .

Cryptography

Cryptographic systems are characterized along three independent dimensions:

1.  

The type of operations used for transforming plaintext to ciphertext. All encryption 
algorithms are based on two general principles: substitution, in which each element in the 
plaintext (bit, letter, group of bits or letters) is mapped into another element, and transposition, 
in which elements in the plaintext are rearranged. The fundamental requirement is that no 
information be lost (that is, that all operations are reversible). Most systems, referred to as 
product systems, involve multiple stages of substitutions and transpositions.

2.  

The number of keys used. If both sender and receiver use the same key, the system is 
referred to as symmetric, single-key, secret-key, or conventional encryption. If the sender and 
receiver use different keys, the system is referred to as asymmetric, two-key, or public-key 
encryption.

3.  

The way in which the plaintext is processed. A block cipher processes the input one block of 
elements at a time, producing an output block for each input block. A stream cipher processes 
the input elements continuously, producing output one element at a time, as it goes along.

Cryptanalysis

Typically, the objective of attacking an encryption system is to recover the key in use rather then simply 
to recover the plaintext of a single ciphertext. There are two general approaches to attacking a 
conventional encryption scheme:

●     Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus perhaps some 
knowledge of the general characteristics of the plaintext or even some sample plaintext-
ciphertext pairs. This type of attack exploits the characteristics of the algorithm to attempt to 
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deduce a specific plaintext or to deduce the key being used.

[Page 33]
●     Brute-force attack: The attacker tries every possible key on a piece of ciphertext until an 

intelligible translation into plaintext is obtained. On average, half of all possible keys must be 
tried to achieve success.

If either type of attack succeeds in deducing the key, the effect is catastrophic: All future and past 
messages encrypted with that key are compromised.

We first consider cryptanalysis and then discuss brute-force attacks.

Table 2.1 summarizes the various types of cryptanalytic attacks, based on the amount of information 
known to the cryptanalyst. The most difficult problem is presented when all that is available is the 
ciphertext only. In some cases, not even the encryption algorithm is known, but in general we can 
assume that the opponent does know the algorithm used for encryption. One possible attack under 
these circumstances is the brute-force approach of trying all possible keys. If the key space is very 
large, this becomes impractical. Thus, the opponent must rely on an analysis of the ciphertext itself, 
generally applying various statistical tests to it. To use this approach, the opponent must have some 
general idea of the type of plaintext that is concealed, such as English or French text, an EXE file, a Java 
source listing, an accounting file, and so on.

Table 2.1. Types of Attacks on Encrypted Messages

Type of Attack Known to Cryptanalyst

Ciphertext only ●     Encryption algorithm
●     Ciphertext

Known plaintext ●     Encryption algorithm
●     Ciphertext
●     One or more plaintext-ciphertext pairs formed with the secret key

Chosen plaintext ●     Encryption algorithm
●     Ciphertext
●     Plaintext message chosen by cryptanalyst, together with its corresponding 

ciphertext generated with the secret key

Chosen ciphertext ●     Encryption algorithm
●     Ciphertext
●     Purported ciphertext chosen by cryptanalyst, together with its 

corresponding decrypted plaintext generated with the secret key
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Chosen text ●     Encryption algorithm
●     Ciphertext
●     Plaintext message chosen by cryptanalyst, together with its corresponding 

ciphertext generated with the secret key
●     Purported ciphertext chosen by cryptanalyst, together with its 

corresponding decrypted plaintext generated with the secret key

 
The ciphertext-only attack is the easiest to defend against because the opponent has the least amount 
of information to work with. In many cases, however, the analyst has more information. The analyst 
may be able to capture one or more plaintext messages as well as their encryptions. Or the analyst may 
know that certain plaintext patterns will appear in a message. For example, a file that is encoded in the 
Postscript format always begins with the same pattern, or there may be a standardized header or 
banner to an electronic funds transfer message, and so on. All these are examples of known plaintext. 
With this knowledge, the analyst may be able to deduce the key on the basis of the way in which the 
known plaintext is transformed.

[Page 34]

Closely related to the known-plaintext attack is what might be referred to as a probable-word attack. If 
the opponent is working with the encryption of some general prose message, he or she may have little 
knowledge of what is in the message. However, if the opponent is after some very specific information, 
then parts of the message may be known. For example, if an entire accounting file is being transmitted, 
the opponent may know the placement of certain key words in the header of the file. As another 
example, the source code for a program developed by Corporation X might include a copyright 
statement in some standardized position.

If the analyst is able somehow to get the source system to insert into the system a message chosen by 
the analyst, then a chosen-plaintext attack is possible. An example of this strategy is differential 
cryptanalysis, explored in Chapter 3. In general, if the analyst is able to choose the messages to 
encrypt, the analyst may deliberately pick patterns that can be expected to reveal the structure of the 
key.

Table 2.1 lists two other types of attack: chosen ciphertext and chosen text. These are less commonly 
employed as cryptanalytic techniques but are nevertheless possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack. Generally, an encryption 
algorithm is designed to withstand a known-plaintext attack.

Two more definitions are worthy of note. An encryption scheme is unconditionally secure if the 
ciphertext generated by the scheme does not contain enough information to determine uniquely the 
corresponding plaintext, no matter how much ciphertext is available. That is, no matter how much time 
an opponent has, it is impossible for him or her to decrypt the ciphertext, simply because the required 
information is not there. With the exception of a scheme known as the one-time pad (described later in 
this chapter), there is no encryption algorithm that is unconditionally secure. Therefore, all that the 
users of an encryption algorithm can strive for is an algorithm that meets one or both of the following 
criteria:

●     The cost of breaking the cipher exceeds the value of the encrypted information.
●     The time required to break the cipher exceeds the useful lifetime of the information.

An encryption scheme is said to be computationally secure if either of the foregoing two criteria are 
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met. The rub is that it is very difficult to estimate the amount of effort required to cryptanalyze 
ciphertext successfully.

All forms of cryptanalysis for symmetric encryption schemes are designed to exploit the fact that traces 
of structure or pattern in the plaintext may survive encryption and be discernible in the ciphertext. This 
will become clear as we examine various symmetric encryption schemes in this chapter. We will see in 
Part Two that cryptanalysis for public-key schemes proceeds from a fundamentally different premise, 
namely, that the mathematical properties of the pair of keys may make it possible for one of the two 
keys to be deduced from the other.

[Page 35]

A brute-force attack involves trying every possible key until an intelligible translation of the ciphertext 
into plaintext is obtained. On average, half of all possible keys must be tried to achieve success. Table 
2.2 shows how much time is involved for various key spaces. Results are shown for four binary key 
sizes. The 56-bit key size is used with the DES (Data Encryption Standard) algorithm, and the 168-bit 
key size is used for triple DES. The minimum key size specified for AES (Advanced Encryption Standard) 
is 128 bits. Results are also shown for what are called substitution codes that use a 26-character key 
(discussed later), in which all possible permutations of the 26 characters serve as keys. For each key 
size, the results are shown assuming that it takes 1 ms to perform a single decryption, which is a 
reasonable order of magnitude for today's machines. With the use of massively parallel organizations of 
microprocessors, it may be possible to achieve processing rates many orders of magnitude greater. The 
final column of Table 2.2 considers the results for a system that can process 1 million keys per 
microsecond. As you can see, at this performance level, DES can no longer be considered 
computationally secure.

Table 2.2. Average Time Required for Exhaustive Key Search

Key size (bits)
Number of 

alternative keys
Time required at 1 

decryption/ms
Time required at 106 

decryption/ms

32 232 = 4.3 x 
109

231 ms = 35.8 minutes 2.15 milliseconds

56 256 = 7.2 x 
1016

255 ms = 1142 years 10.01 hours

128 2128 = 3.4 x 
1038

2127 ms = 5.4 x 1024 
years

5.4 x 1018 years

168 2168 = 3.7 x 
1050

2167 ms = 5.9 x 1036 
years

5.9 x 1030 years

26 characters 
(permutation)

26! = 4 x 1026 2 x 1026 
ms

= 6.4 x 1012 
years

6.4 x 106 years
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[Page 35 (continued)]

2.2. Substitution Techniques

In this section and the next, we examine a sampling of what might be called classical encryption 
techniques. A study of these techniques enables us to illustrate the basic approaches to symmetric 
encryption used today and the types of cryptanalytic attacks that must be anticipated.

The two basic building blocks of all encryption techniques are substitution and transposition. We 
examine these in the next two sections. Finally, we discuss a system that combines both substitution 
and transposition.

A substitution technique is one in which the letters of plaintext are replaced by other letters or by 

numbers or symbols.
[1]

 If the plaintext is viewed as a sequence of bits, then substitution involves 
replacing plaintext bit patterns with ciphertext bit patterns.

[1] When letters are involved, the following conventions are used in this book. Plaintext is always in lowercase; ciphertext is in 
uppercase; key values are in italicized lowercase.

[Page 36]

Caesar Cipher

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. The Caesar 
cipher involves replacing each letter of the alphabet with the letter standing three places further down 
the alphabet. For example,

plain:  meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB

 
Note that the alphabet is wrapped around, so that the letter following Z is A. We can define the 
transformation by listing all possibilities, as follows:

plain:  a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

 
Let us assign a numerical equivalent to each letter:

a b c d e f g h i j k l m

0 1 2 3 4 5 6 7 8 9 10 11 12
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n o p q r s t u v w x y z

13 14 15 16 17 18 19 20 21 22 23 24 25

 
Then the algorithm can be expressed as follows. For each plaintext letter p, substitute the ciphertext 

letter C:
[2]

[2] We define a mod n to be the remainder when a is divided by n. For example, 11 mod 7 = 4. See Chapter 4 for a further 
discussion of modular arithmetic.

C = E(3, p) = (p + 3) mod 26

A shift may be of any amount, so that the general Caesar algorithm is

C = E(k, p) = (p + k) mod 26

where k takes on a value in the range 1 to 25. The decryption algorithm is simply

p = D(k, C) = (C k) mod 26

If it is known that a given ciphertext is a Caesar cipher, then a brute-force cryptanalysis is easily 
performed: Simply try all the 25 possible keys. Figure 2.3 shows the results of applying this strategy to 
the example ciphertext. In this case, the plaintext leaps out as occupying the third line.

Figure 2.3. Brute-Force Cryptanalysis of Caesar Cipher

(This item is displayed on page 37 in the print version) 
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Three important characteristics of this problem enabled us to use a brute-force cryptanalysis:

1.  

The encryption and decryption algorithms are known.

2.  
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There are only 25 keys to try.

3.  

The language of the plaintext is known and easily recognizable.

[Page 37]

In most networking situations, we can assume that the algorithms are known. What generally makes 
brute-force cryptanalysis impractical is the use of an algorithm that employs a large number of keys. For 
example, the triple DES algorithm, examined in Chapter 6, makes use of a 168-bit key, giving a key 
space of 2168 or greater than 3.7 x 1050 possible keys.

The third characteristic is also significant. If the language of the plaintext is unknown, then plaintext 
output may not be recognizable. Furthermore, the input may be abbreviated or compressed in some 
fashion, again making recognition difficult. For example, Figure 2.4 shows a portion of a text file 
compressed using an algorithm called ZIP. If this file is then encrypted with a simple substitution cipher 
(expanded to include more than just 26 alphabetic characters), then the plaintext may not be 
recognized when it is uncovered in the brute-force cryptanalysis.

[Page 38]

Figure 2.4. Sample of Compressed Text

 
Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase in the key space 
can be achieved by allowing an arbitrary substitution. Recall the assignment for the Caesar cipher:

plain:  a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

 
If, instead, the "cipher" line can be any permutation of the 26 alphabetic characters, then there are 26! 
or greater than 4 x 1026 possible keys. This is 10 orders of magnitude greater than the key space for 
DES and would seem to eliminate brute-force techniques for cryptanalysis. Such an approach is referred 
to as a monoalphabetic substitution cipher, because a single cipher alphabet (mapping from plain 
alphabet to cipher alphabet) is used per message.
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There is, however, another line of attack. If the cryptanalyst knows the nature of the plaintext (e.g., 
noncompressed English text), then the analyst can exploit the regularities of the language. To see how 
such a cryptanalysis might proceed, we give a partial example here that is adapted from one in 
[SINK66]. The ciphertext to be solved is

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

 
As a first step, the relative frequency of the letters can be determined and compared to a standard 
frequency distribution for English, such as is shown in Figure 2.5 (based on [LEWA00]). If the message 
were long enough, this technique alone might be sufficient, but because this is a relatively short 
message, we cannot expect an exact match. In any case, the relative frequencies of the letters in the 
ciphertext (in percentages) are as follows:

P 13.33 H 5.83 F 3.33 B 1.67 C 0.00

Z 11.67 D 5.00 W 3.33 G 1.67 K 0.00

S 8.33 E 5.00 Q 2.50 Y 1.67 L 0.00

U 8.33 V 4.17 T 2.50 I 0.83 N 0.00

O 7.50 X 4.17 A 1.67 J 0.83 R 0.00

M 6.67     
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Figure 2.5. Relative Frequency of Letters in English Text

[View full size image]
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Comparing this breakdown with Figure 2.5, it seems likely that cipher letters P and Z are the equivalents 
of plain letters e and t, but it is not certain which is which. The letters S, U, O, M, and H are all of 
relatively high frequency and probably correspond to plain letters from the set {a, h, i, n, o, r, s}.The 
letters with the lowest frequencies (namely, A, B, G, Y, I, J) are likely included in the set {b, j, k, q, v, 
x, z}.

There are a number of ways to proceed at this point. We could make some tentative assignments and 
start to fill in the plaintext to see if it looks like a reasonable "skeleton" of a message. A more 
systematic approach is to look for other regularities. For example, certain words may be known to be in 
the text. Or we could look for repeating sequences of cipher letters and try to deduce their plaintext 
equivalents.

A powerful tool is to look at the frequency of two-letter combinations, known as digrams. A table similar 
to Figure 2.5 could be drawn up showing the relative frequency of digrams. The most common such 
digram is th. In our ciphertext, the most common digram is ZW, which appears three times. So we 
make the correspondence of Z with t and W with h. Then, by our earlier hypothesis, we can equate P 
with e. Now notice that the sequence ZWP appears in the ciphertext, and we can translate that 
sequence as "the." This is the most frequent trigram (three-letter combination) in English, which seems 
to indicate that we are on the right track.

Next, notice the sequence ZWSZ in the first line. We do not know that these four letters form a 
complete word, but if they do, it is of the form th_t. If so, S equates with a.

[Page 40]

So far, then, we have
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UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXAIZ
 t a        e  e te  a that e e a       a
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
   e t   ta t ha e ee   a e  th    t  a
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
 e  e e tat  e   the   t

 
Only four letters have been identified, but already we have quite a bit of the message. Continued 
analysis of frequencies plus trial and error should easily yield a solution from this point. The complete 
plaintext, with spaces added between words, follows:

it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

 
Monoalphabetic ciphers are easy to break because they reflect the frequency data of the original 
alphabet. A countermeasure is to provide multiple substitutes, known as homophones, for a single 
letter. For example, the letter e could be assigned a number of different cipher symbols, such as 16, 74, 
35, and 21, with each homophone used in rotation, or randomly. If the number of symbols assigned to 
each letter is proportional to the relative frequency of that letter, then single-letter frequency 
information is completely obliterated. The great mathematician Carl Friedrich Gauss believed that he had 
devised an unbreakable cipher using homophones. However, even with homophones, each element of 
plaintext affects only one element of ciphertext, and multiple-letter patterns (e.g., digram frequencies) 
still survive in the ciphertext, making cryptanalysis relatively straightforward.

Two principal methods are used in substitution ciphers to lessen the extent to which the structure of the 
plaintext survives in the ciphertext: One approach is to encrypt multiple letters of plaintext, and the 
other is to use multiple cipher alphabets. We briefly examine each.

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in the plaintext as 

single units and translates these units into ciphertext digrams.
[3]

[3] This cipher was actually invented by British scientist Sir Charles Wheatstone in 1854, but it bears the name of his friend 
Baron Playfair of St. Andrews, who championed the cipher at the British foreign office.

[Page 41]

The Playfair algorithm is based on the use of a 5 x 5 matrix of letters constructed using a keyword. Here 

is an example, solved by Lord Peter Wimsey in Dorothy Sayers's Have His Carcase:
[4]

[4] The book provides an absorbing account of a probable-word attack.

M O N A R

C H Y B D
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E F G I/J K

L P Q S T

U V W X Z

 
In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the keyword 
(minus duplicates) from left to right and from top to bottom, and then filling in the remainder of the 
matrix with the remaining letters in alphabetic order. The letters I and J count as one letter. Plaintext is 
encrypted two letters at a time, according to the following rules:

1. Repeating plaintext letters that are in the same pair are separated with a filler letter, such as x, 
so that balloon would be treated as ba lx lo on. 
 

2. Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to the 
right, with the first element of the row circularly following the last. For example, ar is encrypted 
as RM. 
 

3. Two plaintext letters that fall in the same column are each replaced by the letter beneath, with 
the top element of the column circularly following the last. For example, mu is encrypted as CM. 
 

4. Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and the 
column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or JM, as 
the encipherer wishes). 
 

The Playfair cipher is a great advance over simple monoalphabetic ciphers. For one thing, whereas there 
are only 26 letters, there are 26 x 26 = 676 digrams, so that identification of individual digrams is more 
difficult. Furthermore, the relative frequencies of individual letters exhibit a much greater range than 
that of digrams, making frequency analysis much more difficult. For these reasons, the Playfair cipher 
was for a long time considered unbreakable. It was used as the standard field system by the British 
Army in World War I and still enjoyed considerable use by the U.S. Army and other Allied forces during 
World War II.

Despite this level of confidence in its security, the Playfair cipher is relatively easy to break because it 
still leaves much of the structure of the plaintext language intact. A few hundred letters of ciphertext are 
generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers is shown in Figure 2.6, based on 
[SIMM93]. The line labeled plaintext plots the frequency distribution of the more than 70,000 alphabetic 

characters in the Encyclopaedia Brittanica article on cryptology.
[5]

 This is also the frequency distribution 
of any monoalphabetic substitution cipher. The plot was developed in the following way: The number of 
occurrences of each letter in the text was counted and divided by the number of occurrences of the 
letter e (the most frequently used letter). As a result, e has a relative frequency of 1, t of about 0.76, 
and so on. The points on the horizontal axis correspond to the letters in order of decreasing frequency.

[5] I am indebted to Gustavus Simmons for providing the plots and explaining their method of construction.
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Figure 2.6. Relative Frequency of Occurrence of Letters
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[View full size image]

 
Figure 2.6 also shows the frequency distribution that results when the text is encrypted using the 
Playfair cipher. To normalize the plot, the number of occurrences of each letter in the ciphertext was 
again divided by the number of occurrences of e in the plaintext. The resulting plot therefore shows the 
extent to which the frequency distribution of letters, which makes it trivial to solve substitution ciphers, 
is masked by encryption. If the frequency distribution information were totally concealed in the 
encryption process, the ciphertext plot of frequencies would be flat, and cryptanalysis using ciphertext 
only would be effectively impossible. As the figure shows, the Playfair cipher has a flatter distribution 
than does plaintext, but nevertheless it reveals plenty of structure for a cryptanalyst to work with.

Hill Cipher[6]

[6] This cipher is somewhat more difficult to understand than the others in this chapter, but it illustrates an important point 
about cryptanalysis that will be useful later on. This subsection can be skipped on a first reading.

Another interesting multiletter cipher is the Hill cipher, developed by the mathematician Lester Hill in 
1929. The encryption algorithm takes m successive plaintext letters and substitutes for them m 
ciphertext letters. The substitution is determined by m linear equations in which each character is 
assigned a numerical value (a = 0, b = 1 ... z = 25). For m = 3, the system can be described as follows:

[Page 43]

c1 = (k11P1 + k12P2 + k13P3) mod 26
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c2 = (k21P1 + k22P2 + k23P3) mod 26

c3 = (k31P1 + k32P2 + k33P3) mod 26

This can be expressed in term of column vectors and matrices:

 
or

C = KP mod 26

where C and P are column vectors of length 3, representing the plaintext and ciphertext, and K is a 3 x 
3 matrix, representing the encryption key. Operations are performed mod 26.

For example, consider the plaintext "paymoremoney" and use the encryption key

 
The first three letters of the plaintext are represented by the vector

 
the ciphertext for the entire plaintext is LNSHDLEWMTRW.

Decryption requires using the inverse of the matrix K. The inverse K1 of a matrix K is defined by the 
equation KK1 = K1K = I, where I is the matrix that is all zeros except for ones along the main diagonal 
from upper left to lower right. The inverse of a matrix does not always exist, but when it does, it 
satisfies the preceding equation. In this case, the inverse is:
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This is demonstrated as follows:

 
It is easily seen that if the matrix K1 is applied to the ciphertext, then the plaintext is recovered. To 
explain how the inverse of a matrix is determined, we make an exceedingly brief excursion into linear 

algebra.
[7]

 For any square matrix (m x m) the determinant equals the sum of all the products that can 
be formed by taking exactly one element from each row and exactly one element from each column, 
with certain of the product terms preceded by a minus sign. For a 2 x 2 matrix

[7] The basic concepts of linear algebra are summarized in the Math Refresher document at the Computer Science Student 
Resource site at WilliamStallings.com/StudentSupport.html. The interested reader may consult any text on linear algebra for 
greater detail.
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the determinant is k11k22 k12k21. For a 3 x 3 matrix, the value of the determinant is k11k22k33 + 

k21k32k13 + k31k12k23 k31k22k13 k21k12k33 k11k32k23. If a square matrix A has a nonzero determinant, 

then the inverse of the matrix is computed as [A1]
ij
 = (1)i+j(D

ij
)/ded(A), where (D

ij
) is the 

subdeterminant formed by deleting the ith row and the jth column of A and det(A) is the determinant of 
A. For our purposes, all arithmetic is done mod 26.

In general terms, the Hill system can be expressed as follows:

C = E(K, P) = KP mod 26

P = D(K, P) = K1C mod 26 = K1KP = P

As with Playfair, the strength of the Hill cipher is that it completely hides single-letter frequencies. 
Indeed, with Hill, the use of a larger matrix hides more frequency information. Thus a 3 x 3 Hill cipher 
hides not only single-letter but also two-letter frequency information.

Although the Hill cipher is strong against a ciphertext-only attack, it is easily broken with a known 
plaintext attack. For an m x m Hill cipher, suppose we have m plaintext-ciphertext pairs, each of length 
m. We label the pairs
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unknown key matrix K. Now define two m x m matrices X = (Pij) and Y = (Cij). Then we can form the 

matrix equation Y = KX. If X has an inverse, then we can determine K = YX1. If X is not invertible, 
then a new version of X can be formed with additional plaintext-ciphertext pairs until an invertible X is 
obtained.

We use an example based on one in [STIN02]. Suppose that the plaintext "friday" is encrypted using a 2 
x 2 Hill cipher to yield the ciphertext PQCFKU. Thus, we know that

 
Using the first two plaintext-ciphertext pairs, we have
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The inverse of X can be computed:

 
so

 
This result is verified by testing the remaining plaintext-ciphertext pair.

Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use different monoalphabetic 
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substitutions as one proceeds through the plaintext message. The general name for this approach is 
polyalphabetic substitution cipher. All these techniques have the following features in common:

1.  

A set of related monoalphabetic substitution rules is used.

2.  

A key determines which particular rule is chosen for a given transformation.

The best known, and one of the simplest, such algorithm is referred to as the Vigenère cipher. In this 
scheme, the set of related monoalphabetic substitution rules consists of the 26 Caesar ciphers, with 
shifts of 0 through 25. Each cipher is denoted by a key letter, which is the ciphertext letter that 
substitutes for the plaintext letter a. Thus, a Caesar cipher with a shift of 3 is denoted by the key value 
d.

To aid in understanding the scheme and to aid in its use, a matrix known as the Vigenère tableau is 
constructed (Table 2.3). Each of the 26 ciphers is laid out horizontally, with the key letter for each 
cipher to its left. A normal alphabet for the plaintext runs across the top. The process of encryption is 
simple: Given a key letter x and a plaintext letter y, the ciphertext letter is at the intersection of the row 
labeled x and the column labeled y; in this case the ciphertext is V.

Table 2.3. The Modern Vigenère Tableau

(This item is displayed on page 46 in the print version) 

[View full size image]

file:///D|/1/0131873164/ch02lev1sec2.html (13 von 17) [14.10.2007 09:40:05]

file:///D|/1/0131873164/images/02tab03_alt.jpg


Section 2.2.  Substitution Techniques

 
To encrypt a message, a key is needed that is as long as the message. Usually, the key is a repeating 
keyword. For example, if the keyword is deceptive, the message "we are discovered save yourself" is 
encrypted as follows:

key:             deceptivedeceptivedeceptive
plaintext:       wearediscoveredsaveyourself
ciphertext:      ZICVTWQNGRZGVTWAVZHCQYGLMGJ

 
Decryption is equally simple. The key letter again identifies the row. The position of the ciphertext letter 
in that row determines the column, and the plaintext letter is at the top of that column.

The strength of this cipher is that there are multiple ciphertext letters for each plaintext letter, one for 
each unique letter of the keyword. Thus, the letter frequency information is obscured. However, not all 
knowledge of the plaintext structure is lost. For example, Figure 2.6 shows the frequency distribution for 
a Vigenère cipher with a keyword of length 9. An improvement is achieved over the Playfair cipher, but 
considerable frequency information remains.

[Page 47]

It is instructive to sketch a method of breaking this cipher, because the method reveals some of the 
mathematical principles that apply in cryptanalysis.

First, suppose that the opponent believes that the ciphertext was encrypted using either monoalphabetic 
substitution or a Vigenère cipher. A simple test can be made to make a determination. If a 
monoalphabetic substitution is used, then the statistical properties of the ciphertext should be the same 
as that of the language of the plaintext. Thus, referring to Figure 2.5, there should be one cipher letter 
with a relative frequency of occurrence of about 12.7%, one with about 9.06%, and so on. If only a 
single message is available for analysis, we would not expect an exact match of this small sample with 
the statistical profile of the plaintext language. Nevertheless, if the correspondence is close, we can 
assume a monoalphabetic substitution.

If, on the other hand, a Vigenère cipher is suspected, then progress depends on determining the length 
of the keyword, as will be seen in a moment. For now, let us concentrate on how the keyword length 
can be determined. The important insight that leads to a solution is the following: If two identical 
sequences of plaintext letters occur at a distance that is an integer multiple of the keyword length, they 
will generate identical ciphertext sequences. In the foregoing example, two instances of the sequence 
"red" are separated by nine character positions. Consequently, in both cases, r is encrypted using key 
letter e, e is encrypted using key letter p, and d is encrypted using key letter t. Thus, in both cases the 
ciphertext sequence is VTW.

An analyst looking at only the ciphertext would detect the repeated sequences VTW at a displacement of 
9 and make the assumption that the keyword is either three or nine letters in length. The appearance of 
VTW twice could be by chance and not reflect identical plaintext letters encrypted with identical key 
letters. However, if the message is long enough, there will be a number of such repeated ciphertext 
sequences. By looking for common factors in the displacements of the various sequences, the analyst 
should be able to make a good guess of the keyword length.

Solution of the cipher now depends on an important insight. If the keyword length is N, then the cipher, 
in effect, consists of N monoalphabetic substitution ciphers. For example, with the keyword DECEPTIVE, 
the letters in positions 1, 10, 19, and so on are all encrypted with the same monoalphabetic cipher. 
Thus, we can use the known frequency characteristics of the plaintext language to attack each of the 
monoalphabetic ciphers separately.
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The periodic nature of the keyword can be eliminated by using a nonrepeating keyword that is as long 
as the message itself. Vigenère proposed what is referred to as an autokey system, in which a 
keyword is concatenated with the plaintext itself to provide a running key. For our example,

key:           deceptivewearediscoveredsav
plaintext:     wearediscoveredsaveyourself
ciphertext:    ZICVTWQNGKZEIIGASXSTSLVVWLA

 
Even this scheme is vulnerable to cryptanalysis. Because the key and the plaintext share the same 
frequency distribution of letters, a statistical technique can be applied. For example, e enciphered by e, 

by Figure 2.5, can be expected to occur with a frequency of (0.127)2  0.016, whereas t enciphered 
by t would occur only about half as often. These regularities can be exploited to achieve successful 

cryptanalysis.
[8]

[8] Although the techniques for breaking a Vigenère cipher are by no means complex, a 1917 issue of Scientific American 
characterized this system as "impossible of translation." This is a point worth remembering when similar claims are made for 
modern algorithms.

[Page 48]

The ultimate defense against such a cryptanalysis is to choose a keyword that is as long as the plaintext 
and has no statistical relationship to it. Such a system was introduced by an AT&T engineer named 
Gilbert Vernam in 1918. His system works on binary data rather than letters. The system can be 
expressed succinctly as follows:

ci = pi  ki

where

pi = ith binary digit of plaintext

ki = ith binary digit of key

ci = ith binary digit of ciphertext

= exclusive-or (XOR) operation

 
Thus, the ciphertext is generated by performing the bitwise XOR of the plaintext and the key. Because 
of the properties of the XOR, decryption simply involves the same bitwise operation:

pi = ci  ki

The essence of this technique is the means of construction of the key. Vernam proposed the use of a 
running loop of tape that eventually repeated the key, so that in fact the system worked with a very 
long but repeating keyword. Although such a scheme, with a long key, presents formidable cryptanalytic 
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difficulties, it can be broken with sufficient ciphertext, the use of known or probable plaintext sequences, 
or both.

One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the Vernam cipher that 
yields the ultimate in security. Mauborgne suggested using a random key that is as long as the 
message, so that the key need not be repeated. In addition, the key is to be used to encrypt and 
decrypt a single message, and then is discarded. Each new message requires a new key of the same 
length as the new message. Such a scheme, known as a one-time pad, is unbreakable. It produces 
random output that bears no statistical relationship to the plaintext. Because the ciphertext contains no 
information whatsoever about the plaintext, there is simply no way to break the code.

An example should illustrate our point. Suppose that we are using a Vigenère scheme with 27 characters 
in which the twenty-seventh character is the space character, but with a one-time key that is as long as 
the message. Thus, the tableau of Table 2.3 must be expanded to 27 x 27. Consider the ciphertext

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
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We now show two different decryptions using two different keys:

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key:        pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
plaintext:  mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key:        mfugpmiydgaxgoufhklllmhsqdqogtewbqfgyovuhwt
plaintext:  miss scarlet with the knife in the library

 
Suppose that a cryptanalyst had managed to find these two keys. Two plausible plaintexts are produced. 
How is the cryptanalyst to decide which is the correct decryption (i.e., which is the correct key)? If the 
actual key were produced in a truly random fashion, then the cryptanalyst cannot say that one of these 
two keys is more likely than the other. Thus, there is no way to decide which key is correct and 
therefore which plaintext is correct.

In fact, given any plaintext of equal length to the ciphertext, there is a key that produces that plaintext. 
Therefore, if you did an exhaustive search of all possible keys, you would end up with many legible 
plaintexts, with no way of knowing which was the intended plaintext. Therefore, the code is unbreakable.

The security of the one-time pad is entirely due to the randomness of the key. If the stream of 
characters that constitute the key is truly random, then the stream of characters that constitute the 
ciphertext will be truly random. Thus, there are no patterns or regularities that a cryptanalyst can use to 
attack the ciphertext.

In theory, we need look no further for a cipher. The one-time pad offers complete security but, in 
practice, has two fundamental difficulties:

1.  
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There is the practical problem of making large quantities of random keys. Any heavily used 
system might require millions of random characters on a regular basis. Supplying truly random 
characters in this volume is a significant task.

2.  

Even more daunting is the problem of key distribution and protection. For every message to be 
sent, a key of equal length is needed by both sender and receiver. Thus, a mammoth key 
distribution problem exists.

Because of these difficulties, the one-time pad is of limited utility, and is useful primarily for low-
bandwidth channels requiring very high security.
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[Page 49 (continued)]

2.3. Transposition Techniques

All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext symbol. 
A very different kind of mapping is achieved by performing some sort of permutation on the plaintext 
letters. This technique is referred to as a transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is written down as a sequence 
of diagonals and then read off as a sequence of rows. For example, to encipher the message "meet me 
after the toga party" with a rail fence of depth 2, we write the following:

[Page 50]

m e m a t r h t g p r y
 e t e f e t e o a a t

 
The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the message in a 
rectangle, row by row, and read the message off, column by column, but permute the order of the 
columns. The order of the columns then becomes the key to the algorithm. For example,

Key:           4 3 1 2 5 6 7
Plaintext:     a t t a c k p
               o s t p o n e
               d u n t i l t
               w o a m x y z
Ciphertext:    TTNAAPTMTSUOAODWCOIXKNLYPETZ

 
A pure transposition cipher is easily recognized because it has the same letter frequencies as the original 
plaintext. For the type of columnar transposition just shown, cryptanalysis is fairly straightforward and 
involves laying out the ciphertext in a matrix and playing around with column positions. Digram and 
trigram frequency tables can be useful.

The transposition cipher can be made significantly more secure by performing more than one stage of 
transposition. The result is a more complex permutation that is not easily reconstructed. Thus, if the 
foregoing message is reencrypted using the same algorithm,

Key:         4 3 1 2 5 6 7
Input:       t t n a a p t
             m t s u o a o
             d w c o i x k
             n l y p e t z
Output:      NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

file:///D|/1/0131873164/ch02lev1sec3.html (1 von 2) [14.10.2007 09:40:06]



Section 2.3.  Transposition Techniques

 
To visualize the result of this double transposition, designate the letters in the original plaintext message 
by the numbers designating their position. Thus, with 28 letters in the message, the original sequence of 
letters is

01 02 03 04 05 06 07 08 09 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28
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After the first transposition we have

03 10 17 24 04 11 18 25 02 09 16 23 01 08
15 22 05 12 19 26 06 13 20 27 07 14 21 28

 
which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25
15 13 04 23 19 14 11 01 26 21 18 08 06 28

 
This is a much less structured permutation and is much more difficult to cryptanalyze.
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[Page 51 (continued)]

2.4. Rotor Machines

The example just given suggests that multiple stages of encryption can produce an algorithm that is 
significantly more difficult to cryptanalyze. This is as true of substitution ciphers as it is of transposition 
ciphers. Before the introduction of DES, the most important application of the principle of multiple 

stages of encryption was a class of systems known as rotor machines.
[9]

[9] Machines based on the rotor principle were used by both Germany (Enigma) and Japan (Purple) in World War II. The 
breaking of both codes by the Allies was a significant factor in the war's outcome.

The basic principle of the rotor machine is illustrated in Figure 2.7. The machine consists of a set of 
independently rotating cylinders through which electrical pulses can flow. Each cylinder has 26 input pins 
and 26 output pins, with internal wiring that connects each input pin to a unique output pin. For 
simplicity, only three of the internal connections in each cylinder are shown.

Figure 2.7. Three-Rotor Machine with Wiring Represented by Numbered 
Contacts

(This item is displayed on page 52 in the print version) 

[View full size image]
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If we associate each input and output pin with a letter of the alphabet, then a single cylinder defines a 
monoalphabetic substitution. For example, in Figure 2.7, if an operator depresses the key for the letter 
A, an electric signal is applied to the first pin of the first cylinder and flows through the internal 
connection to the twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is depressed, the cylinder rotates one 
position, so that the internal connections are shifted accordingly. Thus, a different monoalphabetic 
substitution cipher is defined. After 26 letters of plaintext, the cylinder would be back to the initial 
position. Thus, we have a polyalphabetic substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable cryptanalytic task. The power of the 
rotor machine is in the use of multiple cylinders, in which the output pins of one cylinder are connected 
to the input pins of the next. Figure 2.7 shows a three-cylinder system. The left half of the figure shows 
a position in which the input from the operator to the first pin (plaintext letter a) is routed through the 
three cylinders to appear at the output of the second pin (ciphertext letter B).

With multiple cylinders, the one closest to the operator input rotates one pin position with each 
keystroke. The right half of Figure 2.7 shows the system's configuration after a single keystroke. For 
every complete rotation of the inner cylinder, the middle cylinder rotates one pin position. Finally, for 
every complete rotation of the middle cylinder, the outer cylinder rotates one pin position. This is the 
same type of operation seen with an odometer. The result is that there are 26 x 26 x 26 = 17,576 
different substitution alphabets used before the system repeats. The addition of fourth and fifth rotors 
results in periods of 456,976 and 11,881,376 letters, respectively. As David Kahn eloquently put it, 
referring to a five-rotor machine [KAHN96, page 413]:

[Page 53]

A period of that length thwarts any practical possibility of a straightforward solution on 
the basis of letter frequency. This general solution would need about 50 letters per cipher 
alphabet, meaning that all five rotors would have to go through their combined cycle 50 
times. The ciphertext would have to be as long as all the speeches made on the floor of 
the Senate and the House of Representatives in three successive sessions of Congress. 
No cryptanalyst is likely to bag that kind of trophy in his lifetime; even diplomats, who 
can be as verbose as politicians, rarely scale those heights of loquacity.

The significance of the rotor machine today is that it points the way to the most widely used cipher ever: 
the Data Encryption Standard (DES). This we examine in Chapter 3.
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[Page 53 (continued)]

2.5. Steganography

We conclude with a discussion of a technique that is, strictly speaking, not encryption, namely, 
steganography.

A plaintext message may be hidden in one of two ways. The methods of steganography conceal the 
existence of the message, whereas the methods of cryptography render the message unintelligible to 

outsiders by various transformations of the text.
[10]

[10] Steganography was an obsolete word that was revived by David Kahn and given the meaning it has today [KAHN96].

A simple form of steganography, but one that is time-consuming to construct, is one in which an 
arrangement of words or letters within an apparently innocuous text spells out the real message. For 
example, the sequence of first letters of each word of the overall message spells out the hidden 
message. Figure 2.8 shows an example in which a subset of the words of the overall message is used to 
convey the hidden message.

Figure 2.8. A Puzzle for Inspector Morse

(This item is displayed on page 54 in the print version) 

(From The Silent World of Nicholas Quinn, by Colin Dexter)

 
Various other techniques have been used historically; some examples are the following [MYER91]:

●     Character marking: Selected letters of printed or typewritten text are overwritten in pencil. The 

file:///D|/1/0131873164/ch02lev1sec5.html (1 von 2) [14.10.2007 09:40:07]



Section 2.5.  Steganography

marks are ordinarily not visible unless the paper is held at an angle to bright light.
●     Invisible ink: A number of substances can be used for writing but leave no visible trace until 

heat or some chemical is applied to the paper.

[Page 54]
●     Pin punctures: Small pin punctures on selected letters are ordinarily not visible unless the 

paper is held up in front of a light.
●     Typewriter correction ribbon: Used between lines typed with a black ribbon, the results of 

typing with the correction tape are visible only under a strong light.

Although these techniques may seem archaic, they have contemporary equivalents. [WAYN93] proposes 
hiding a message by using the least significant bits of frames on a CD. For example, the Kodak Photo CD 
format's maximum resolution is 2048 by 3072 pixels, with each pixel containing 24 bits of RGB color 
information. The least significant bit of each 24-bit pixel can be changed without greatly affecting the 
quality of the image. The result is that you can hide a 2.3-megabyte message in a single digital 
snapshot. There are now a number of software packages available that take this type of approach to 
steganography.

Steganography has a number of drawbacks when compared to encryption. It requires a lot of overhead 
to hide a relatively few bits of information, although using some scheme like that proposed in the 
preceding paragraph may make it more effective. Also, once the system is discovered, it becomes 
virtually worthless. This problem, too, can be overcome if the insertion method depends on some sort of 
key (e.g., see Problem 2.11). Alternatively, a message can be first encrypted and then hidden using 
steganography.

The advantage of steganography is that it can be employed by parties who have something to lose 
should the fact of their secret communication (not necessarily the content) be discovered. Encryption 
flags traffic as important or secret or may identify the sender or receiver as someone with something to 
hide.
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2.6. Recommended Reading and Web Sites

For anyone interested in the history of code making and code breaking, the book to read [KAHN96]. 
Although it is concerned more with the impact of cryptology than its technical development, it is an 
excellent introduction and makes for exciting reading. Another excellent historical account is [SING99].

A short treatment covering the techniques of this chapter, and more, is [GARD72]. There are many 
books that cover classical cryptography in a more technical vein; one of the best is [SINK66]. [KORN96] 
is a delightful book to read and contains a lengthy section on classical techniques. Two cryptography 
books that contain a fair amount of technical material on classical techniques are [GARR01] and 
[NICH99]. For the truly interested reader, the two-volume [NICH96] covers numerous classical ciphers 
in detail and provides many ciphertexts to be cryptanalyzed, together with the solutions.

An excellent treatment of rotor machines, including a discussion of their cryptanalysis is found in 
[KUMA97].

[KATZ00] provides a thorough treatment of steganography. Another good source is [WAYN96].

GARD72 Gardner, M. Codes, Ciphers, and Secret Writing. New York: Dover, 1972.

GARR01 Garrett, P. Making, Breaking Codes: An Introduction to Cryptology. Upper 
Saddle River, NJ: Prentice Hall, 2001.

KAHN96 Kahn, D. The Codebreakers: The Story of Secret Writing. New York: Scribner, 
1996.

KATZ00 Katzenbeisser, S., ed. Information Hiding Techniques for Steganography and 
Digital Watermarking. Boston: Artech House, 2000.

KORN96 Korner, T. The Pleasures of Counting. Cambridge, England: Cambridge 
University Press, 1996.

KUMA97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

NICH96 Nichols, R. Classical Cryptography Course. Laguna Hills, CA: Aegean Park 
Press, 1996.

NICH99 Nichols, R. ed. ICSA Guide to Cryptography. New York: McGraw-Hill, 1999.

SING99 Singh, S. :The Code Book: The Science of Secrecy from Ancient Egypt to 
Quantum Cryptography. New York: Anchor Books, 1999.

SINK66 Sinkov, A. Elementary Cryptanalysis: A Mathematical Approach. Washington, 
DC: The Mathematical Association of America, 1966.
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WAYN96 Wayner, P. Disappearing Cryptography. Boston: AP Professional Books, 1996.

 
Recommended Web Sites

●     American Cryptogram Association: An association of amateur cryptographers. The Web site 
includes information and links to sites concerned with classical cryptography.

[Page 56]
●     Crypto Corner: Simon Singh's Web site. Lots of good information, plus interactive tools for 

learning about cryptography.
●     Steganography: Good collection of links and documents.
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[Page 56 (continued)]

2.7. Key Terms, Review Questions, and Problems

Key Terms

block cipher

brute-force attack

Caesar cipher

cipher

ciphertext

computationally secure

conventional encryption

cryptanalysis

cryptographic system

cryptography

cryptology

deciphering

decryption

enciphering

encryption

Hill cipher

monoalphabetic cipher

one-time pad

plaintext
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Playfair cipher

polyalphabetic cipher

rail fence cipher

single-key encryption

steganography

stream cipher

symmetric encryption

transposition cipher

unconditionally secure

Vigenère cipher

Review Questions

2.1 What are the essential ingredients of a symmetric cipher?

2.2 What are the two basic functions used in encryption algorithms?

2.3 How many keys are required for two people to communicate via a cipher?

2.4 What is the difference between a block cipher and a stream cipher?

2.5 What are the two general approaches to attacking a cipher?

2.6 List and briefly define types of cryptanalytic attacks based on what is known to the 
attacker.

2.7 What is the difference between an unconditionally secure cipher and a computationally 
secure cipher?

2.8 Briefly define the Caesar cipher.

2.9 Briefly define the monoalphabetic cipher.

2.10 Briefly define the Playfair cipher.

2.11 What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?

2.12 What are two problems with the one-time pad?
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2.13 What is a transposition cipher?

2.14 What is steganography?

Problems

2.1 A generalization of the Caesar cipher, knows as the affine Caesar cipher, has the 
following form: For each plaintext letter p, substitute the ciphertext letter C:

C = E([a, b], p) = (ap + b) mod 26

[Page 57]

A basic requirement of any encryption algorithm is that it be one-to-one. That is, if p 

 q, then E(k, p)  E(k, q). Otherwise, decryption is impossible, because more than 
one plaintext character maps into the same ciphertext character. The affine Caesar 
cipher is not one-to-one for all values of a. For example, for a = 2 and b = 3, then E
([a, b], 0) = E([a, b], 13) = 3.

a.  

Are there any limitations on the value of b? Explain why or why not.

b.  

Determine which values of a are not allowed.

c.  

Provide a general statement of which values of a are and are not allowed. 
Justify your statement.

2.2 How many one-to-one affine Caesar ciphers are there?

2.3 A ciphertext has been generated with an affine cipher. The most frequent letter of the 
ciphertext is 'B', and the second most frequent letter of the ciphertext is 'U'. Break this 
code.
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2.4 The following ciphertext was generated using a simple substitution algorithm:

53 305))6*;4826)4 .)4 );806*;48 8¶60))85;;]8*;: *8 83

(88)5* ;46(;88*96*?;8)* (;485);5* 2:* (;4956*2(5*-4)88*

;4069285);)6 8)4 [ddagger];1( 9;48081;8:8 1;48 85;4)

485 528806*81

( 9;48;(88;4( ?34;48)4 ;161;:188; ?;

Decrypt this message. Hints:

1.  

As you know, the most frequently occurring letter in English is e. Therefore, 
the first or second (or perhaps third?) most common character in the message 
is likely to stand for e. Also, e is often seen in pairs (e.g., meet, fleet, speed, 
seen, been, agree, etc.). Try to find a character in the ciphertext that decodes 
to e.

2.  

The most common word in English is "the." Use this fact to guess the 
characters that stand for t and h.

3.  

Decipher the rest of the message by deducing additional words.

Warning: The resulting message is in English but may not make much sense on a first 
reading.

2.5 One way to solve the key distribution problem is to use a line from a book that both 
the sender and the receiver possess. Typically, at least in spy novels, the first 
sentence of a book serves as the key. The particular scheme discussed in this problem 
is from one of the best suspense novels involving secret codes, Talking to Strange 
Men, by Ruth Rendell. Work this problem without consulting that book!

Consider the following message:

SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA

This ciphertext was produced using the first sentence of The Other Side of Silence (a 
book about the spy Kim Philby):

The snow lay thick on the steps and the snowflakes driven by the wind 
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looked black in the headlights of the cars.

A simple substitution cipher was used.

a.  

What is the encryption algorithm?

b.  

How secure is it?

c.  

To make the key distribution problem simple, both parties can agree to use the 
first or last sentence of a book as the key. To change the key, they simply 
need to agree on a new book. The use of the first sentence would be preferable 
to the use of the last. Why?

2.6 In one of his cases, Sherlock Holmes was confronted with the following message.

534 C2 13 127 36 31 4 17 21 41

DOUGLAS 109 293 5 37 BIRLSTONE

26 BIRLSTONE 9 127 171

 
Although Watson was puzzled, Holmes was able immediately to deduce the type of 
cipher. Can you?

[Page 58]

2.7 This problem uses a real-world example, from an old U.S. Special Forces manual 
(public domain). A copy is available at ftp://shell.shore.net/members/w/s/ws/
Support/Crypto/FM-31-4.pdf

a.  

Using the two keys (memory words) cryptographic and network security, 
encrypt the following message:

Be at the third pillar from the left outside the lyceum theatre tonight at seven. 
If you are distrustful bring two friends.

Make reasonable assumptions about how to treat redundant letters and excess 
letters in the memory words and how to treat spaces and punctuation. Indicate 
what your assumptions are. Note: The message is from the Sherlock Holmes 
novel, The Sign of Four.
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b.  

Decrypt the ciphertext. Show your work.

c.  

Comment on when it would be appropriate to use this technique and what its 
advantages are.

2.8 A disadvantage of the general monoalphabetic cipher is that both sender and receiver 
must commit the permuted cipher sequence to memory. A common technique for 
avoiding this is to use a keyword from which the cipher sequence can be generated. 
For example, using the keyword CIPHER, write out the keyword followed by unused 
letters in normal order and match this against the plaintext letters:

plain:      a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher:     C I P H E R A B D F G J K L M N O Q S T U V W X Y Z

 
If it is felt that this process does not produce sufficient mixing, write the remaining 
letters on successive lines and then generate the sequence by reading down the 
columns:

C I P H E R
A B D F G J
K L M N O Q
S T U V W X
Y Z

 
This yields the sequence

C A K S Y I B L T Z P D M U H F N V E G O W R J Q X

 
Such a system is used in the example in Section 2.2 (the one that begins "it was 
disclosed yesterday"). Determine the keyword.

2.9 When the PT-109 American patrol boat, under the command of Lieutenant John F. 
Kennedy, was sunk by a Japanese destroyer, a message was received at an Australian 
wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS
KREHE GOYFI WTTTU OLKSY CAJPO
BOTEI ZONTX BYBNT GONEY CUZWR
GDSON SXBOU YWRHE BAAHY USEDQ

 
The key used was royal new zealand navy. Decrypt the message. Translate TT into tt.
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2.10 a.  
Construct a Playfair matrix with the key largest.

b.  

Construct a Playfair matrix with the key occurrence. Make a reasonable 
assumption about how to treat redundant letters in the key.

2.11 a.  
Using this Playfair matrix

M F H I/J K

U N O P Q

Z V W X Y

E L A R G

D S T B C
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encrypt this message:

Must see you over Cadogan West. Coming at once.

Note: The message is from the Sherlock Holmes story, The Adventure of the 
Bruce-Partington Plans.

b.  

Repeat part (a) using the Playfair matrix from Problem 2.10a.

c.  

How do you account for the results of this problem? Can you generalize your 
conclusion?
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2.12 a.  
How many possible keys does the Playfair cipher have? Ignore the fact that 
some keys might produce identical encryption results. Express your answer as 
an approximate power of 2.

b.  

Now take into account the fact that some Playfair keys produce the same 
encryption results. How many effectively unique keys does the Playfair cipher 
have?

2.13 What substitution system results when we use a 25 x 1 Playfair matrix?

2.14 a.  
Decipher the message YITJP GWJOW FAQTQ XCSMA ETSQU SQAPU SQGKC 

PQTYJ using the Hill cipher with the inverse key . Show your 
calculations and the result.

b.  

Decipher the message MWALO LIAIW WTGBH JNTAK QZJKA ADAWS SKQKU 
AYARN CSODN IIAES OQKJY B using the Hill cipher with the inverse key 

. Show your calculations and the result.

2.15 a.  
Encrypt the message "meet me at the usual place at ten rather than eight 

oclock" using the Hill cipher with the key . Show your calculations 
and the result.

b.  

Show the calculations for the corresponding decryption of the ciphertext to 
recover the original plaintext.

2.16 We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient 
plaintext-ciphertext pairs are provided. It is even easier to solve the Hill cipher if a 
chosen plaintext attack can be mounted. Describe such an attack.
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2.17

It can be shown that the Hill cipher with the matrix  requires that (ad bc) is 
relatively prime to 26; that is the only common positive factor of (ad bc) and 26 is 1. 
Thus, if (ad bc) = 13 or is even, the matrix is not allowed. Determine the number of 
different (good) keys there are for a 2 x 2 Hill cipher without counting them one by 
one, using the following steps:

a.  
Find the number of matrices whose determinant is even because one or both 
rows are even. (A row is "even" if both entries in the row are even.) 
 

b.  
Find the number of matrices whose determinant is even because one or both 
columns are even. (A column is "even" if both entries in the column are even.) 
 

c.  
Find the number of matrices whose determinant is even because all of the 
entries are odd. 
 

d.  
Taking into account overlaps, find the total number of matrices whose 
determinant is even. 
 

e.  
Find the number of matrices whose determinant is a multiple of 13 because the 
first column is a multiple of 13. 
 

f.  
Find the number of matrices whose determinant is a multiple of 13 where the 
first column is not a multiple of 13 but the second column is a multiple of the 
first modulo 13. 
 

g.  
Find the total number of matrices whose determinant is a multiple of 13. 
 

h.  
Find the number of matrices whose determinant is a multiple of 26 because 
they fit case (a) and (e). (b) and (e). (c) and (e). (a) and (f). And so on ... 
 

i.  
Find the total number of matrices whose determinant is neither a multiple of 2 
nor a multiple of 13. 
 

2.18 Using the Vigenère cipher, encrypt the word "explanation" using the key leg.

[Page 60]
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2.19 This problem explores the use of a one-time pad version of the Vigenère cipher. In 
this scheme, the key is a stream of random numbers between 0 and 26. For example, 
if the key is 3 19 5 ..., then the first letter of plaintext is encrypted with a shift of 3 
letters, the second with a shift of 19 letters, the third with a shift of 5 letters, and so 
on.

a.  

Encrypt the plaintext sendmoremoney with the key stream 9 0 1 7 23 15 21 14 
11 11 2 8 9.

b.  

Using the ciphertext produced in part a, find a key so that the cipher text 
decrypts to the plaintext cashnotneeded.

2.20 What is the message embedded in Figure 2.8?

2.21 In one of Dorothy Sayers's mysteries, Lord Peter is confronted with the message 
shown in Figure 2.9. He also discovers the key to the message, which is a sequence of 
integers:

787656543432112343456567878878765654

3432112343456567878878765654433211234

a.  

Decrypt the message. Hint: What is the largest integer value?

b.  

If the algorithm is known but not the key, how secure is the scheme?

c.  

If the key is known but not the algorithm, how secure is the scheme?

Figure 2.9. A Puzzle for Lord Peter
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Programming Problems

2.22 Write a program that can encrypt and decrypt using the general Caesar cipher, also 
known as an additive cipher.

2.23 Write a program that can encrypt and decrypt using the affine cipher described in 
Problem 2.1.

2.24 Write a program that can perform a letter frequency attack on an additive cipher 
without human intervention. Your software should produce possible plaintexts in rough 
order of likelihood. It would be good if your user interface allowed the user to specify 
"give me the top 10 possible plaintexts".

[Page 61]

2.25 Write a program that can perform a letter frequency attack on any monoalphabetic 
substitution cipher without human intervention. Your software should produce possible 
plaintexts in rough order of likelihood. It would be good if your user interface allowed 
the user to specify "give me the top 10 possible plaintexts".

2.26 Create software that can encrypt and decrypt using a 2 x 2 Hill cipher.

2.27 Create software that can perform a fast known plaintext attack on a Hill cipher, given 
the dimension m. How fast are your algorithms, as a function of m?
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Chapter 3. Block Ciphers and the Data Encryption Standard

3.1 Block Cipher Principles

3.2 The Data Encryption Standard

3.3 The Strength of Des

3.4 Differential and Linear Cryptanalysis

3.5 Block Cipher Design Principles

3.6 Recommended Reading
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All the afternoon Mungo had been working on Stern's code, principally with the aid of the 
latest messages which he had copied down at the Nevin Square drop. Stern was very 
confident. He must be well aware London Central knew about that drop. It was obvious 
that they didn't care how often Mungo read their messages, so confident were they in the 
impenetrability of the code.

Talking to Strange Men, Ruth Rendell

Key Points

●     A block cipher is an encryption/decryption scheme in which a block of plaintext is 
treated as a whole and used to produce a ciphertext block of equal length.

●     Many block ciphers have a Feistel structure. Such a structure consists of a number 
of identical rounds of processing. In each round, a substitution is performed on one 
half of the data being processed, followed by a permutation that interchanges the 
two halves. The original key is expanded so that a different key is used for each 
round.

●     The Data Encryption Standard (DES) has been the most widely used encryption 
algorithm until recently. It exhibits the classic Feistel structure. DES uses a 64-bit 
block and a 56-bit key.

●     Two important methods of cryptanalysis are differential cryptanalysis and linear 
cryptanalysis. DES has been shown to be highly resistant to these two types of 
attack.

 

file:///D|/1/0131873164/ch03.html (1 von 2) [14.10.2007 09:40:09]



Chapter 3.  Block Ciphers and the Data Encryption Standard

The objective of this chapter is to illustrate the principles of modern symmetric ciphers. For this 
purpose, we focus on the most widely used symmetric cipher: the Data Encryption Standard (DES). 
Although numerous symmetric ciphers have been developed since the introduction of DES, and although 
it is destined to be replaced by the Advanced Encryption Standard (AES), DES remains the most 
important such algorithm. Further, a detailed study of DES provides an understanding of the principles 
used in other symmetric ciphers. We examine other important symmetric ciphers, including AES, in 
Chapters 5 and 6.

This chapter begins with a discussion of the general principles of symmetric block ciphers, which are the 
type of symmetric ciphers studied in this book (with the exception of the stream cipher RC4 in Chapter 
6). Next, we cover full DES. Following this look at a specific algorithm, we return to a more general 
discussion of block cipher design.

Compared to public-key ciphers such as RSA, the structure of DES, and most symmetric ciphers, is very 
complex and cannot be explained as easily as RSA and similar algorithms. Accordingly, the reader may 
with to begin with a simplified version of DES, which is described in Appendix C. This version allows the 
reader to perform encryption and decryption by hand and gain a good understanding of the working of 
the algorithm details. Classroom experience indicates that a study of this simplified version enhances 

understanding of DES.
[1]

[1] However, you may safely skip Appendix C, at least on a first reading. If you get lost or bogged down in the details of DES, 
then you can go back and start with simplified DES.
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3.1. Block Cipher Principles

Most symmetric block encryption algorithms in current use are based on a structure referred to as a 
Feistel block cipher [FEIS73]. For that reason, it is important to examine the design principles of the 
Feistel cipher. We begin with a comparison of stream ciphers and block ciphers. Then we discuss the 
motivation for the Feistel block cipher structure. Finally, we discuss some of its implications.

Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. Examples of 
classical stream ciphers are the autokeyed Vigenère cipher and the Vernam cipher. A block cipher is 
one in which a block of plaintext is treated as a whole and used to produce a ciphertext block of equal 
length. Typically, a block size of 64 or 128 bits is used. Using some of the modes of operation explained 
in Chapter 6, a block cipher can be used to achieve the same effect as a stream cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem applicable to a broader 
range of applications than stream ciphers. The vast majority of network-based symmetric cryptographic 
applications make use of block ciphers. Accordingly, the concern in this chapter, and in our discussions 
throughout the book of symmetric encryption, will focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a ciphertext block of n bits. There are 

2n possible different plaintext blocks and, for the encryption to be reversible (i.e., for decryption to be 
possible), each must produce a unique ciphertext block. Such a transformation is called reversible, or 
nonsingular. The following examples illustrate nonsingular and singular transformation for n = 2.

Reversible Mapping

Plaintext Ciphertext

00 11

01 10

10 00

11 01

 
Irreversible Mapping

file:///D|/1/0131873164/ch03lev1sec1.html (1 von 12) [14.10.2007 09:40:10]

file:///D|/1/0131873164/6991536.html


Section 3.1.  Block Cipher Principles

Plaintext Ciphertext

00 11

01 10

10 01

11 01

 
In the latter case, a ciphertext of 01 could have been produced by one of two plaintext blocks. So if we 

limit ourselves to reversible mappings, the number of different transformations is 2n!.

[Page 65]

Figure 3.1 illustrates the logic of a general substitution cipher for n = 4. A 4-bit input produces one of 16 
possible input states, which is mapped by the substitution cipher into a unique one of 16 possible output 
states, each of which is represented by 4 ciphertext bits. The encryption and decryption mappings can 
be defined by a tabulation, as shown in Table 3.1. This is the most general form of block cipher and can 
be used to define any reversible mapping between plaintext and ciphertext. Feistel refers to this as the 
ideal block cipher, because it allows for the maximum number of possible encryption mappings from the 
plaintext block [FEIS75].

[Page 66]

Figure 3.1. General n-bit-n-bit Block Substitution (shown with n = 4)

(This item is displayed on page 65 in the print version) 
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Table 3.1. 
Encryption and 

Decryption Tables 
for Substitution 

Cipher of Figure 3.4

(This item is displayed on 
page 65 in the print 

version) 

Plaintext Ciphertext

0000 1110

0001 0100

0010 1101

0011 0001

0100 0010
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0101 1111

0110 1011

0111 1000

1000 0011

1001 1010

1010 0110

1011 1100

1100 0101

1101 1001

1110 0000

1111 0111

0000 1110

0001 0011

0010 0100

0011 1000

0100 0001

0101 1100

0110 1010

0111 1111

1000 0111

1001 1101

1010 1001

1011 0110

1100 1011

1101 0010

1110 0000

1111 0101

 
But there is a practical problem with the ideal block cipher. If a small block size, such as n = 4, is used, 
then the system is equivalent to a classical substitution cipher. Such systems, as we have seen, are 
vulnerable to a statistical analysis of the plaintext. This weakness is not inherent in the use of a 
substitution cipher but rather results from the use of a small block size. If n is sufficiently large and an 
arbitrary reversible substitution between plaintext and ciphertext is allowed, then the statistical 
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characteristics of the source plaintext are masked to such an extent that this type of cryptanalysis is 
infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large block size is not practical, 
however, from an implementation and performance point of view. For such a transformation, the 
mapping itself constitutes the key. Consider again Table 3.1, which defines one particular reversible 
mapping from plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the second 
column, which show the value of the ciphertext for each plaintext block. This, in essence, is the key that 
determines the specific mapping from among all possible mappings. In this case, using this 
straightforward method of defining the key, the required key length is (4 bits) x (16 rows) = 64 bits. In 

general, for an n-bit ideal block cipher, the length of the key defined in this fashion is n x 2n bits. For a 
64-bit block, which is a desirable length to thwart statistical attacks, the required key length is 64 x 264 

= 270  1021bits.

In considering these difficulties, Feistel points out that what is needed is an approximation to the ideal 
block cipher system for large n, built up out of components that are easily realizable [FEIS75]. But 
before turning to Feistel's approach, let us make one other observation. We could use the general block 
substitution cipher but, to make its implementation tractable, confine ourselves to a subset of the 
possible reversible mappings. For example, suppose we define the mapping in terms of a set of linear 
equations. In the case of n = 4, we have

y1 = k11x1 + k12x2 + k13x3 + k14x4

y2 = k21x1 + k22x2 + k23x3 + k24x4

y3 = k31x1 + k32x2 + k33x3 + k34x4

y4 = k41x1 + k42x2 + k43x3 + k44x4

 
where the xi are the four binary digits of the plaintext block, the yi are the four binary digits of the 

ciphertext block, the kij are the binary coefficients, and arithmetic is mod 2. The key size is just n2, in 

this case 16 bits. The danger with this kind of formulation is that it may be vulnerable to cryptanalysis 
by an attacker that is aware of the structure of the algorithm. In this example, what we have is 
essentially the Hill cipher discussed in Chapter 2, applied to binary data rather than characters. As we 
saw in Chapter 2, a simple linear system such as this is quite vulnerable.
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The Feistel Cipher

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utilizing the concept of a 
product cipher, which is the execution of two or more simple ciphers in sequence in such a way that the 
final result or product is cryptographically stronger than any of the component ciphers. The essence of 
the approach is to develop a block cipher with a key length of k bits and a block length of n bits, 

allowing a total of 2k possible transformations, rather than the 2n! transformations available with the 
ideal block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions and permutations. In fact, 
this is a practical application of a proposal by Claude Shannon to develop a product cipher that 
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alternates confusion and diffusion functions [SHAN49]. We look next at these concepts of diffusion and 
confusion and then present the Feistel cipher. But first, it is worth commenting on this remarkable fact: 
The Feistel cipher structure, which dates back over a quarter century and which, in turn, is based on 
Shannon's proposal of 1945, is the structure used by many significant symmetric block ciphers currently 
in use.

Diffusion and Confusion

The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic building 

blocks for any cryptographic system [SHAN49].
[2]

 Shannon's concern was to thwart cryptanalysis based 
on statistical analysis. The reasoning is as follows. Assume the attacker has some knowledge of the 
statistical characteristics of the plaintext. For example, in a human-readable message in some language, 
the frequency distribution of the various letters may be known. Or there may be words or phrases likely 
to appear in the message (probable words). If these statistics are in any way reflected in the ciphertext, 
the cryptanalyst may be able to deduce the encryption key, or part of the key, or at least a set of keys 
likely to contain the exact key. In what Shannon refers to as a strongly ideal cipher, all statistics of the 
ciphertext are independent of the particular key used. The arbitrary substitution cipher that we 
discussed previously (Figure 3.1) is such a cipher, but as we have seen, is impractical.

[2] Shannon's 1949 paper appeared originally as a classified report in 1945. Shannon enjoys an amazing and unique position 
in the history of computer and information science. He not only developed the seminal ideas of modern cryptography but is 
also responsible for inventing the discipline of information theory. In addition, he founded another discipline, the application of 
Boolean algebra to the study of digital circuits; this last he managed to toss off as a master's thesis.

Other than recourse to ideal systems, Shannon suggests two methods for frustrating statistical 
cryptanalysis: diffusion and confusion. In diffusion, the statistical structure of the plaintext is dissipated 
into long-range statistics of the ciphertext. This is achieved by having each plaintext digit affect the 
value of many ciphertext digits; generally this is equivalent to having each ciphertext digit be affected 
by many plaintext digits. An example of diffusion is to encrypt a message M = m1, m2, m3,... of 

characters with an averaging operation:

 
adding k successive letters to get a ciphertext letter yn. One can show that the statistical structure of 

the plaintext has been dissipated. Thus, the letter frequencies in the ciphertext will be more nearly equal 
than in the plaintext; the digram frequencies will also be more nearly equal, and so on. In a binary block 
cipher, diffusion can be achieved by repeatedly performing some permutation on the data followed by 
applying a function to that permutation; the effect is that bits from different positions in the original 

plaintext contribute to a single bit of ciphertext.
[3]

[3] Some books on cryptography equate permutation with diffusion. This is incorrect. Permutation, by itself, does not change 
the statistics of the plaintext at the level of individual letters or permuted blocks. For example, in DES, the permutation swaps 
two 32-bit blocks, so statistics of strings of 32 bits or less are preserved.
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Every block cipher involves a transformation of a block of plaintext into a block of ciphertext, where the 
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transformation depends on the key. The mechanism of diffusion seeks to make the statistical 
relationship between the plaintext and ciphertext as complex as possible in order to thwart attempts to 
deduce the key. On the other hand, confusion seeks to make the relationship between the statistics of 
the ciphertext and the value of the encryption key as complex as possible, again to thwart attempts to 
discover the key. Thus, even if the attacker can get some handle on the statistics of the ciphertext, the 
way in which the key was used to produce that ciphertext is so complex as to make it difficult to deduce 
the key. This is achieved by the use of a complex substitution algorithm. In contrast, a simple linear 
substitution function would add little confusion.

As [ROBS95b] points out, so successful are diffusion and confusion in capturing the essence of the 
desired attributes of a block cipher that they have become the cornerstone of modern block cipher 
design.

Feistel Cipher Structure

Figure 3.2 depicts the structure proposed by Feistel. The inputs to the encryption algorithm are a 
plaintext block of length 2w bits and a key K. The plaintext block is divided into two halves, L0 and R0. 

The two halves of the data pass through n rounds of processing and then combine to produce the 
ciphertext block. Each round i has as inputs Li-1 and Ri-1, derived from the previous round, as well as a 

subkey Ki, derived from the overall K. In general, the subkeys Ki are different from K and from each 

other.

Figure 3.2. Classical Feistel Network

(This item is displayed on page 69 in the print version) 
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All rounds have the same structure. A substitution is performed on the left half of the data. This is 
done by applying a round function F to the right half of the data and then taking the exclusive-OR of the 
output of that function and the left half of the data. The round function has the same general structure 
for each round but is parameterized by the round subkey Ki. Following this substitution, a permutation 

is performed that consists of the interchange of the two halves of the data.
[4]

 This structure is a 
particular form of the substitution-permutation network (SPN) proposed by Shannon.

[4] The final round is followed by an interchange that undoes the interchange that is part of the final round. One could simply 
leave both interchanges out of the diagram, at the sacrifice of some consistency of presentation. In any case, the effective 
lack of a swap in the final round is done to simplify the implementation of the decryption process, as we shall see.

The exact realization of a Feistel network depends on the choice of the following parameters and design 
features:

●     Block size: Larger block sizes mean greater security (all other things being equal) but reduced 
encryption/decryption speed for a given algorithm. The greater security is achieved by greater 
diffusion Traditionally, a block size of 64 bits has been considered a reasonable tradeoff and was 
nearly universal in block cipher design. However, the new AES uses a 128-bit block size.

[Page 69]
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●     Key size: Larger key size means greater security but may decrease encryption/decryption 
speed. The greater security is achieved by greater resistance to brute-force attacks and greater 
confusion. Key sizes of 64 bits or less are now widely considered to be inadequate, and 128 bits 
has become a common size.

●     Number of rounds: The essence of the Feistel cipher is that a single round offers inadequate 
security but that multiple rounds offer increasing security. A typical size is 16 rounds.

●     Subkey generation algorithm: Greater complexity in this algorithm should lead to greater 
difficulty of cryptanalysis.

[Page 70]
●     Round function: Again, greater complexity generally means greater resistance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:
●     Fast software encryption/decryption: In many cases, encryption is embedded in applications 

or utility functions in such a way as to preclude a hardware implementation. Accordingly, the 
speed of execution of the algorithm becomes a concern.

●     Ease of analysis: Although we would like to make our algorithm as difficult as possible to 
cryptanalyze, there is great benefit in making the algorithm easy to analyze. That is, if the 
algorithm can be concisely and clearly explained, it is easier to analyze that algorithm for 
cryptanalytic vulnerabilities and therefore develop a higher level of assurance as to its strength. 
DES, for example, does not have an easily analyzed functionality.

Feistel Decryption Algorithm

The process of decryption with a Feistel cipher is essentially the same as the encryption process. The 
rule is as follows: Use the ciphertext as input to the algorithm, but use the subkeys Ki in reverse order. 

That is, use Kn in the first round, Kn-1 in the second round, and so on until K1 is used in the last round. 

This is a nice feature because it means we need not implement two different algorithms, one for 
encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct result, consider Figure 
3.3, which shows the encryption process going down the left-hand side and the decryption process going 
up the right-hand side for a 16-round algorithm (the result would be the same for any number of 
rounds). For clarity, we use the notation LE

i
 and RE

i
 for data traveling through the encryption algorithm 

and LDi and RD
i
 for data traveling through the decryption algorithm. The diagram indicates that, at 

every round, the intermediate value of the decryption process is equal to the corresponding value of the 
encryption process with the two halves of the value swapped. To put this another way, let the output of 
the ith encryption round be LE

i
||RE

i
 (Li concatenated with Ri). Then the corresponding input to the (16 i)

th decryption round is RE
i
||LE

i
 or, equivalently, RD16-i

||LD16-i
.

Figure 3.3. Feistel Encryption and Decryption

(This item is displayed on page 71 in the print version) 
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Let us walk through Figure 3.3 to demonstrate the validity of the preceding assertions.
[5]

 After the last 
iteration of the encryption process, the two halves of the output are swapped, so that the ciphertext is 
RE16||LE16. The output of that round is the ciphertext. Now take that ciphertext and use it as input to 

the same algorithm. The input to the first round is RE16||LE16, which is equal to the 32-bit swap of the 

output of the sixteenth round of the encryption process.

[5] To simplify the diagram, it is untwisted, not showing the swap that occurs at the end of each iteration. But please note that 
the intermediate result at the end of the ith stage of the encryption process is the 2w-bit quantity formed by concatenating LEi 

and REi, and that the intermediate result at the end of the ith stage of the decryption process is the 2w-bit quantity formed by 

concatenating LDi and RDi.

[Page 71]

Now we would like to show that the output of the first round of the decryption process is equal to a 32-
bit swap of the input to the sixteenth round of the encryption process. First, consider the encryption 
process. We see that

LE16 = RE15

RE16 = LE15 x F(RE15, K16)

[Page 72]

On the decryption side,

LD1 = RD0 = LE16 = RE15

RD1 = LD0 x F(RD0, K16)

= RE16 x F(RE15, K16)

= [LE15 x F(RE15, K16)] x F(RE15, K16)

The XOR has the following properties:

[A x B] x C = A x [B x C]

D x D = 0

E x 0 = E

Thus, we have LD1 = RE15 and RD1 = LE15. Therefore, the output of the first round of the decryption 

process is LE15||RE15, which is the 32-bit swap of the input to the sixteenth round of the encryption. 
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This correspondence holds all the way through the 16 iterations, as is easily shown. We can cast this 
process in general terms. For the ith iteration of the encryption algorithm,

LE
i
 = RE

i-1

RE
i
 =LE

i-1
 x F(RE

i-1
, K

i
)

Rearranging terms,

RE
i-1

 = LE
i

LE
i-1

 = RE
i
 x F(RE

i-1
, K

i2
 = RE

i
 x F(LE

i
, K

i
)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and these equations 
confirm the assignments shown in the right-hand side of Figure 3.3.

Finally, we see that the output of the last round of the decryption process is RE0||LE0. A 32-bit swap 

recovers the original plaintext, demonstrating the validity of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To see this, take a limiting case 
in which F produces a constant output (e.g., all ones) regardless of the values of its two arguments. The 
equations still hold.
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[Page 72 (continued)]

3.2. The Data Encryption Standard

The most widely used encryption scheme is based on the Data Encryption Standard (DES) adopted in 
1977 by the National Bureau of Standards, now the National Institute of Standards and Technology 
(NIST), as Federal Information Processing Standard 46 (FIPS PUB 46). The algorithm itself is referred to 

as the Data Encryption Algorithm (DEA).
[6]

 For DES, data are encrypted in 64-bit blocks using a 56-bit 
key. The algorithm transforms 64-bit input in a series of steps into a 64-bit output. The same steps, 
with the same key, are used to reverse the encryption.

[6] The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchangeably. However, the 
most recent edition of the DES document includes a specification of the DEA described here plus the triple DEA (TDEA) 
described in Chapter 6. Both DEA and TDEA are part of the Data Encryption Standard. Further, until the recent adoption of 
the official term TDEA, the triple DEA algorithm was typically referred to as triple DES and written as 3DES. For the sake 
of convenience, we use the term 3DES.

[Page 73]

The DES enjoys widespread use. It has also been the subject of much controversy concerning how 
secure the DES is. To appreciate the nature of the controversy, let us quickly review the history of the 
DES.

In the late 1960s, IBM set up a research project in computer cryptography led by Horst Feistel. The 
project concluded in 1971 with the development of an algorithm with the designation LUCIFER [FEIS73], 
which was sold to Lloyd's of London for use in a cash-dispensing system, also developed by IBM. 
LUCIFER is a Feistel block cipher that operates on blocks of 64 bits, using a key size of 128 bits. Because 
of the promising results produced by the LUCIFER project, IBM embarked on an effort to develop a 
marketable commercial encryption product that ideally could be implemented on a single chip. The effort 
was headed by Walter Tuchman and Carl Meyer, and it involved not only IBM researchers but also 
outside consultants and technical advice from NSA. The outcome of this effort was a refined version of 
LUCIFER that was more resistant to cryptanalysis but that had a reduced key size of 56 bits, to fit on a 
single chip.

In 1973, the National Bureau of Standards (NBS) issued a request for proposals for a national cipher 
standard. IBM submitted the results of its Tuchman-Meyer project. This was by far the best algorithm 
proposed and was adopted in 1977 as the Data Encryption Standard.

Before its adoption as a standard, the proposed DES was subjected to intense criticism, which has not 
subsided to this day. Two areas drew the critics' fire. First, the key length in IBM's original LUCIFER 
algorithm was 128 bits, but that of the proposed system was only 56 bits, an enormous reduction in key 
size of 72 bits. Critics feared that this key length was too short to withstand brute-force attacks. The 
second area of concern was that the design criteria for the internal structure of DES, the S-boxes, were 
classified. Thus, users could not be sure that the internal structure of DES was free of any hidden weak 
points that would enable NSA to decipher messages without benefit of the key. Subsequent events, 
particularly the recent work on differential cryptanalysis, seem to indicate that DES has a very strong 
internal structure. Furthermore, according to IBM participants, the only changes that were made to the 
proposal were changes to the S-boxes, suggested by NSA, that removed vulnerabilities identified in the 
course of the evaluation process.
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Whatever the merits of the case, DES has flourished and is widely used, especially in financial 
applications. In 1994, NIST reaffirmed DES for federal use for another five years; NIST recommended 
the use of DES for applications other than the protection of classified information. In 1999, NIST issued 
a new version of its standard (FIPS PUB 46-3) that indicated that DES should only be used for legacy 
systems and that triple DES (which in essence involves repeating the DES algorithm three times on the 
plaintext using two or three different keys to produce the ciphertext) be used. We study triple DES in 
Chapter 6. Because the underlying encryption and decryption algorithms are the same for DES and triple 
DES, it remains important to understand the DES cipher.

DES Encryption

The overall scheme for DES encryption is illustrated in Figure 3.4. As with any encryption scheme, there 
are two inputs to the encryption function: the plaintext to be encrypted and the key. In this case, the 

plaintext must be 64 bits in length and the key is 56 bits in length.
[7]

[7] Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the other 8 bits can be 
used as parity bits or simply set arbitrarily.

[Page 74]

Figure 3.4. General Depiction of DES Encryption Algorithm

file:///D|/1/0131873164/ch03lev1sec2.html (2 von 13) [14.10.2007 09:40:13]



Section 3.2.  The Data Encryption Standard

 
Looking at the left-hand side of the figure, we can see that the processing of the plaintext proceeds in 
three phases. First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the 
bits to produce the permuted input. This is followed by a phase consisting of 16 rounds of the same 
function, which involves both permutation and substitution functions. The output of the last (sixteenth) 
round consists of 64 bits that are a function of the input plaintext and the key. The left and right halves 
of the output are swapped to produce the preoutput. Finally, the preoutput is passed through a 
permutation (IP-1) that is the inverse of the initial permutation function, to produce the 64-bit 
ciphertext. With the exception of the initial and final permutations, DES has the exact structure of a 
Feistel cipher, as shown in Figure 3.2.
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[Page 75]

The right-hand portion of Figure 3.4 shows the way in which the 56-bit key is used. Initially, the key is 
passed through a permutation function. Then, for each of the 16 rounds, a subkey (Ki) is produced by 

the combination of a left circular shift and a permutation. The permutation function is the same for each 
round, but a different subkey is produced because of the repeated shifts of the key bits.

Initial Permutation

The initial permutation and its inverse are defined by tables, as shown in Tables 3.2a and 3.2b, 
respectively. The tables are to be interpreted as follows. The input to a table consists of 64 bits 
numbered from 1 to 64. The 64 entries in the permutation table contain a permutation of the numbers 
from 1 to 64. Each entry in the permutation table indicates the position of a numbered input bit in the 
output, which also consists of 64 bits.

Table 3.2. Permutation Tables 
for DES

(This item is displayed on page 76 in the 
print version) 

(a) Initial Permutation (IP)

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 16 8

57 49 41 33 25 17 9 1

59 51 43 35 27 19 11 3

61 53 45 37 29 21 13 5

63 55 47 39 31 23 15 7

(b) Inverse Initial Permutation (IP1)

40 8 48 16 56 24 64 32

39 7 47 15 55 23 63 31

38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28

35 3 43 11 51 19 59 27
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34 2 42 10 50 18 58 26

33 1 41 9 49 17 57 25

(c) Expansion Permutation (E)

 32 1 2 3 4 5  

 4 5 6 7 8 9  

 8 9 10 11 12 13  

 12 13 14 15 16 17  

 16 17 18 19 20 21  

 20 21 22 23 24 25  

 24 25 26 27 28 29  

 28 29 30 31 32 1  

(d) Permutation Function (P)

16 7 20 21 29 12 28 17

1 15 23 26 5 18 31 10

2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

 
To see that these two permutation functions are indeed the inverse of each other, consider the following 
64-bit input M:

M1 M2 M3 M4 M5 M6 M7 M8

M9 M10 M11 M12 M13 M14 M15 M16

M17 M18 M19 M20 M21 M22 M23 M24

M25 M26 M27 M28 M29 M30 M31 M32

M33 M34 M35 M36 M37 M38 M39 M40

M41 M42 M43 M44 M45 M46 M47 M48

M49 M50 M51 M52 M53 M54 M55 M56

M57 M58 M59 M60 M61 M62 M63 M64

 
where Mi is a binary digit. Then the permutation X = IP(M) is as follows:
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M58 M50 M42 M34 M26 M18 M10 M2

M60 M52 M44 M36 M28 M20 M12 M4

M62 M54 M46 M38 M30 M22 M14 M6

M64 M56 M48 M40 M32 M24 M16 M8

M57 M49 M41 M33 M25 M17 M9 M1

M59 M51 M43 M35 M27 M19 M11 M3

M61 M53 M45 M37 M29 M21 M13 M5

M63 M55 M47 M39 M31 M23 M15 M7

 
If we then take the inverse permutation Y = IP-1(X) = IP-1(IP(M)), it can be seen that the original 
ordering of the bits is restored.

Details of Single Round

Figure 3.5 shows the internal structure of a single round. Again, begin by focusing on the left-hand side 
of the diagram. The left and right halves of each 64-bit intermediate value are treated as separate 32-
bit quantities, labeled L (left) and R (right). As in any classic Feistel cipher, the overall processing at 
each round can be summarized in the following formulas:

[Page 76]

Li = R
i-1

Ri = L
i-1

 x F(R
i-1

, K
i
)

[Page 77]

Figure 3.5. Single Round of DES Algorithm

[View full size image]
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The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by using a 

table that defines a permutation plus an expansion that involves duplication of 16 of the R bits (Table 
3.2c). The resulting 48 bits are XORed with Ki. This 48-bit result passes through a substitution function 

that produces a 32-bit output, which is permuted as defined by Table 3.2d.

The role of the S-boxes in the function F is illustrated in Figure 3.6. The substitution consists of a set of 
eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output. These 
transformations are defined in Table 3.3, which is interpreted as follows: The first and last bits of the 
input to box S

i
 form a 2-bit binary number to select one of four substitutions defined by the four rows in 

the table for S
i
. The middle four bits select one of the sixteen columns. The decimal value in the cell 

selected by the row and column is then converted to its 4-bit representation to produce the output. For 
example, in S1 for input 011001, the row is 01 (row 1) and the column is 1100 (column 12). The value 

in row 1, column 12 is 9, so the output is 1001.

Figure 3.6. Calculation of F(R, K)

(This item is displayed on page 78 in the print version) 
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Table 3.3. Definition of DES S-Boxes

(This item is displayed on page 79 in the print version) 

[View full size image]
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Each row of an S-box defines a general reversible substitution. Figure 3.1 may be useful in 
understanding the mapping. The figure shows the substitution for row 0 of box S1.

The operation of the S-boxes is worth further comment. Ignore for the moment the contribution of the 
key (Ki). If you examine the expansion table, you see that the 32 bits of input are split into groups of 4 

bits, and then become groups of 6 bits by taking the outer bits from the two adjacent groups. For 
example, if part of the input word is

[Page 78]

... efgh ijkl mnop ...

this becomes

... defghi hijklm lmnopq ...

The outer two bits of each group select one of four possible substitutions (one row of an S-box). Then a 
4-bit output value is substituted for the particular 4-bit input (the middle four input bits). The 32-bit 
output from the eight S-boxes is then permuted, so that on the next round the output from each S-box 
immediately affects as many others as possible.

Key Generation

Returning to Figures 3.4 and 3.5, we see that a 64-bit key is used as input to the algorithm. The bits of 
the key are numbered from 1 through 64; every eighth bit is ignored, as indicated by the lack of shading 
in Table 3.4a. The key is first subjected to a permutation governed by a table labeled Permuted Choice 
One (Table 3.4b). The resulting 56-bit key is then treated as two 28-bit quantities, labeled C0 and D0. At 

each round, C
i-1

 and D
i-1

 are separately subjected to a circular left shift, or rotation, of 1 or 2 bits, as 

governed by Table 3.4d. These shifted values serve as input to the next round. They also serve as input 
to Permuted Choice Two (Table 3.4c), which produces a 48-bit output that serves as input to the 
function F(R

i-1
, Ki).

[Page 80]

Table 3.4. DES Key Schedule Calculation

(a) Input Key

 1  2  3  4  5  6  7  8  

 9  10  11  12  13  14  15  16  

 17  18  19  20  21  22  23  24  
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 25  26  27  28  29  30  31  32  

 33  34  35  36  37  38  39  40  

 41  42  43  44  45  46  47  48  

 49  50  51  52  53  54  55  56  

 57  58  59  60  61  62  63  64  

(b) Permuted Choice One (PC-1)

  57  49  41  33  25  17  9   

  1  58  50  42  34  26  18   

  10  2  59  51  43  35  27   

  19  11  3  60  52  44  36   

  63  55  47  39  31  23  15   

  7  62  54  46  38  30  22   

  14  6  61  53  45  37  29   

  21  13  5  28  20  12  4   

(c) Permuted Choice Two (PC-2)

 14  17  11  24  1  5  3  28  

 15  6  21  10  23  19  12  4  

 26  8  16  7  27  20  13  2  

 41  52  31  37  47  55  30  40  

 51  45  33  48  44  49  39  56  

 34  53  46  42  50  36  29  32  

(d) Schedule of Left Shifts

Round number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits rotated 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

 
DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption, except that the application 
of the subkeys is reversed.

The Avalanche Effect
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A desirable property of any encryption algorithm is that a small change in either the plaintext or the key 
should produce a significant change in the ciphertext. In particular, a change in one bit of the plaintext 
or one bit of the key should produce a change in many bits of the ciphertext. If the change were small, 
this might provide a way to reduce the size of the plaintext or key space to be searched.

[Page 81]

DES exhibits a strong avalanche effect. Table 3.5 shows some results taken from [KONH81]. In Table 
3.5a, two plaintexts that differ by one bit were used:

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

10000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

with the key

0000001 1001011 0100100 1100010 0011100 0011000 0011100 0110010

Table 3.5. Avalanche Effect in DES

(a) Change in Plaintext (b) Change in Key

Round Number of bits that differ Round Number of bits that differ

0 1 0 0

1 6 1 2

2 21 2 14

3 35 3 28

4 39 4 32

5 34 5 30

6 32 6 32

7 31 7 35

8 29 8 34

9 42 9 40

10 44 10 38

11 32 11 31
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12 30 12 33

13 30 13 28

14 26 14 26

15 29 15 34

16 34 16 35

 
The Table 3.5a shows that after just three rounds, 21 bits differ between the two blocks. On completion, 
the two ciphertexts differ in 34 bit positions.

Table 3.5b shows a similar test in which a single plaintext is input:

01101000 10000101 00101111 01111010 00010011 01110110 11101011 10100100

with two keys that differ in only one bit position:

1110010 1111011 1101111 0011000 0011101 0000100 0110001 11011100

0110010 1111011 1101111 0011000 0011101 0000100 0110001 11011100

Again, the results show that about half of the bits in the ciphertext differ and that the avalanche effect is 
pronounced after just a few rounds.
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3.3. The Strength of Des

Since its adoption as a federal standard, there have been lingering concerns about the level of security 
provided by DES. These concerns, by and large, fall into two areas: key size and the nature of the 
algorithm.

The Use of 56-Bit Keys

With a key length of 56 bits, there are 256 possible keys, which is approximately 7.2 x 1016. Thus, on 
the face of it, a brute-force attack appears impractical. Assuming that, on average, half the key space 
has to be searched, a single machine performing one DES encryption per microsecond would take more 
than a thousand years (see Table 2.2) to break the cipher.

However, the assumption of one encryption per microsecond is overly conservative. As far back as 1977, 
Diffie and Hellman postulated that the technology existed to build a parallel machine with 1 million 
encryption devices, each of which could perform one encryption per microsecond [DIFF77]. This would 
bring the average search time down to about 10 hours. The authors estimated that the cost would be 
about $20 million in 1977 dollars.

DES finally and definitively proved insecure in July 1998, when the Electronic Frontier Foundation (EFF) 
announced that it had broken a DES encryption using a special-purpose "DES cracker" machine that was 
built for less than $250,000. The attack took less than three days. The EFF has published a detailed 
description of the machine, enabling others to build their own cracker [EFF98]. And, of course, hardware 
prices will continue to drop as speeds increase, making DES virtually worthless.

It is important to note that there is more to a key-search attack than simply running through all possible 
keys. Unless known plaintext is provided, the analyst must be able to recognize plaintext as plaintext. If 
the message is just plain text in English, then the result pops out easily, although the task of 
recognizing English would have to be automated. If the text message has been compressed before 
encryption, then recognition is more difficult. And if the message is some more general type of data, 
such as a numerical file, and this has been compressed, the problem becomes even more difficult to 
automate. Thus, to supplement the brute-force approach, some degree of knowledge about the 
expected plaintext is needed, and some means of automatically distinguishing plaintext from garble is 
also needed. The EFF approach addresses this issue as well and introduces some automated techniques 
that would be effective in many contexts.

Fortunately, there are a number of alternatives to DES, the most important of which are AES and triple 
DES, discussed in Chapters 5 and 6, respectively.

The Nature of the DES Algorithm

Another concern is the possibility that cryptanalysis is possible by exploiting the characteristics of the 
DES algorithm. The focus of concern has been on the eight substitution tables, or S-boxes, that are used 
in each iteration. Because the design criteria for these boxes, and indeed for the entire algorithm, were 
not made public, there is a suspicion that the boxes were constructed in such a way that cryptanalysis is 
possible for an opponent who knows the weaknesses in the S-boxes. This assertion is tantalizing, and 
over the years a number of regularities and unexpected behaviors of the S-boxes have been discovered. 
Despite this, no one has so far succeeded in discovering the supposed fatal weaknesses in the S-boxes.
[8]
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[8] At least, no one has publicly acknowledged such a discovery.

[Page 83]

Timing Attacks

We discuss timing attacks in more detail in Part Two, as they relate to public-key algorithms. However, 
the issue may also be relevant for symmetric ciphers. In essence, a timing attack is one in which 
information about the key or the plaintext is obtained by observing how long it takes a given 
implementation to perform decryptions on various ciphertexts. A timing attack exploits the fact that an 
encryption or decryption algorithm often takes slightly different amounts of time on different inputs. 
[HEVI99] reports on an approach that yields the Hamming weight (number of bits equal to one) of the 
secret key. This is a long way from knowing the actual key, but it is an intriguing first step. The authors 
conclude that DES appears to be fairly resistant to a successful timing attack but suggest some avenues 
to explore. Although this is an interesting line of attack, it so far appears unlikely that this technique will 
ever be successful against DES or more powerful symmetric ciphers such as triple DES and AES.
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[Page 83 (continued)]

3.4. Differential and Linear Cryptanalysis

For most of its life, the prime concern with DES has been its vulnerability to brute-force attack because 
of its relatively short (56 bits) key length. However, there has also been interest in finding cryptanalytic 
attacks on DES. With the increasing popularity of block ciphers with longer key lengths, including triple 
DES, brute-force attacks have become increasingly impractical. Thus, there has been increased 
emphasis on cryptanalytic attacks on DES and other symmetric block ciphers. In this section, we provide 
a brief overview of the two most powerful and promising approaches: differential cryptanalysis and 
linear cryptanalysis.

Differential Cryptanalysis

One of the most significant advances in cryptanalysis in recent years is differential cryptanalysis. In this 
section, we discuss the technique and its applicability to DES.

History

Differential cryptanalysis was not reported in the open literature until 1990. The first published effort 
appears to have been the cryptanalysis of a block cipher called FEAL by Murphy [MURP90]. This was 
followed by a number of papers by Biham and Shamir, who demonstrated this form of attack on a 
variety of encryption algorithms and hash functions; their results are summarized in [BIHA93].

The most publicized results for this approach have been those that have application to DES. Differential 
cryptanalysis is the first published attack that is capable of breaking DES in less than 255 complexity. 
The scheme, as reported in [BIHA93], can successfully cryptanalyze DES with an effort on the order of 
247 encryptions, requiring 247 chosen plaintexts. Although 247 is certainly significantly less than 255 the 
need for the adversary to find 247 chosen plaintexts makes this attack of only theoretical interest.

[Page 84]

Although differential cryptanalysis is a powerful tool, it does not do very well against DES. The reason, 
according to a member of the IBM team that designed DES [COPP94], is that differential cryptanalysis 
was known to the team as early as 1974. The need to strengthen DES against attacks using differential 
cryptanalysis played a large part in the design of the S-boxes and the permutation P. As evidence of the 
impact of these changes, consider these comparable results reported in [BIHA93]. Differential 
cryptanalysis of an eight-round LUCIFER algorithm requires only 256 chosen plaintexts, whereas an 
attack on an eight-round version of DES requires 214 chosen plaintexts.

Differential Cryptanalysis Attack

The differential cryptanalysis attack is complex; [BIHA93] provides a complete description. The rationale 
behind differential cryptanalysis is to observe the behavior of pairs of text blocks evolving along each 
round of the cipher, instead of observing the evolution of a single text block. Here, we provide a brief 
overview so that you can get the flavor of the attack.
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We begin with a change in notation for DES. Consider the original plaintext block m to consist of two 
halves m0,m1. Each round of DES maps the right-hand input into the left-hand output and sets the right-

hand output to be a function of the left-hand input and the subkey for this round. So, at each round, 

only one new 32-bit block is created. If we label each new block m1(2  i  17), then the intermediate 

message halves are related as follows:

m
i+1 = m

i-1
  f(mi, Ki

), i = 1, 2, ..., 16

In differential cryptanalysis, we start with two messages, m and m', with a known XOR difference ∆m = 

m  m', and consider the difference between the intermediate message halves: mi = mi  mi' Then 

we have:

 
Now, suppose that many pairs of inputs to f with the same difference yield the same output difference if 
the same subkey is used. To put this more precisely, let us say that X may cause Y with probability p, if 
for a fraction p of the pairs in which the input XOR is X, the output XOR equals Y. We want to suppose 
that there are a number of values of X that have high probability of causing a particular output 
difference. Therefore, if we know ∆m

i-1
 and ∆m

i
 with high probability, then we know ∆m

i+1 with high 

probability. Furthermore, if a number of such differences are determined, it is feasible to determine the 
subkey used in the function f.

The overall strategy of differential cryptanalysis is based on these considerations for a single round. The 
procedure is to begin with two plaintext messages m and m' with a given difference and trace through a 
probable pattern of differences after each round to yield a probable difference for the ciphertext. 
Actually, there are two probable patterns of differences for the two 32-bit halves: (∆m17||m16). Next, 

we submit m and m' for encryption to determine the actual difference under the unknown key and 
compare the result to the probable difference. If there is a match,

E(K, m)  E(K, m') = (∆m17||m16)
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then we suspect that all the probable patterns at all the intermediate rounds are correct. With that 
assumption, we can make some deductions about the key bits. This procedure must be repeated many 
times to determine all the key bits.

Figure 3.7, based on a figure in [BIHA93], illustrates the propagation of differences through three 
rounds of DES. The probabilities shown on the right refer to the probability that a given set of 
intermediate differences will appear as a function of the input differences. Overall, after three rounds the 
probability that the output difference is as shown is equal to 0.25 x 1 x 0.25 = 0.0625.
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Figure 3.7. Differential Propagation through Three Round of DES (numbers in 
hexadecimal)

 
Linear Cryptanalysis

A more recent development is linear cryptanalysis, described in [MATS93]. This attack is based on 
finding linear approximations to describe the transformations performed in DES. This method can find a 
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DES key given 243 known plaintexts, as compared to 247 chosen plaintexts for differential cryptanalysis. 
Although this is a minor improvement, because it may be easier to acquire known plaintext rather than 
chosen plaintext, it still leaves linear cryptanalysis infeasible as an attack on DES. So far, little work has 
been done by other groups to validate the linear cryptanalytic approach.
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We now give a brief summary of the principle on which linear cryptanalysis is based. For a cipher with n-
bit plaintext and ciphertext blocks and an m-bit key, let the plaintext block be labeled P[1], ... P[n], the 
cipher text block C[1], ... C[n], and the key K[1], ... K[m]. Then define

A[i, j, ..., k] = A[i]  A[j]  ...  A[k]

The objective of linear cryptanalysis is to find an effective linear equation of the form:

P[α1, α2, ..., αa]  C[β1, β2, ..., βb] = K[γ1, γ2, ..., γc]

(where x = 0 or 1; 1  a, b  n, 1  c  m, and where the α, β and γ terms represent fixed, unique 

bit locations) that holds with probability p  0.5. The further p is from 0.5, the more effective the 
equation. Once a proposed relation is determined, the procedure is to compute the results of the left-
hand side of the preceding equation for a large number of plaintext-ciphertext pairs. If the result is 0 
more than half the time, assume K[γ1, γ2, ..., γc] = 0. If it is 1 most of the time, assume K[γ1, γ2, ..., γc] 

= 1. This gives us a linear equation on the key bits. Try to get more such relations so that we can solve 
for the key bits. Because we are dealing with linear equations, the problem can be approached one 
round of the cipher at a time, with the results combined.
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3.5. Block Cipher Design Principles

Although much progress has been made in designing block ciphers that are cryptographically strong, the 
basic principles have not changed all that much since the work of Feistel and the DES design team in the 
early 1970s. It is useful to begin this discussion by looking at the published design criteria used in the 
DES effort. Then we look at three critical aspects of block cipher design: the number of rounds, design 
of the function F, and key scheduling.

DES Design Criteria

The criteria used in the design of DES, as reported in [COPP94], focused on the design of the S-boxes 
and on the P function that takes the output of the S boxes (Figure 3.6). The criteria for the S-boxes are 
as follows:

1.  

No output bit of any S-box should be too close a linear function of the input bits. Specifically, if 
we select any output bit and any subset of the six input bits, the fraction of inputs for which this 
output bit equals the XOR of these input bits should not be close to 0 or 1, but rather should be 
near 1/2.

2.  

Each row of an S-box (determined by a fixed value of the leftmost and rightmost input bits) 
should include all 16 possible output bit combinations.

3.  

If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two bits.
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4.  

If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in at least 
two bits.

5.  

If two inputs to an S-box differ in their first two bits and are identical in their last two bits, the 
two outputs must not be the same.

6.  

For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs 
exhibiting that difference may result in the same output difference.
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7.  

This is a criterion similar to the previous one, but for the case of three S-boxes.

Coppersmith pointed out that the first criterion in the preceding list was needed because the S-boxes 
are the only nonlinear part of DES. If the S-boxes were linear (i.e., each output bit is a linear 
combination of the input bits), the entire algorithm would be linear and easily broken. We have seen this 
phenomenon with the Hill cipher, which is linear. The remaining criteria were primarily aimed at 
thwarting differential cryptanalysis and at providing good confusion properties.

The criteria for the permutation P are as follows:

1.  

The four output bits from each S-box at round i are distributed so that two of them affect 
(provide input for) "middle bits" of round (i + 1) and the other two affect end bits. The two 
middle bits of input to an S-box are not shared with adjacent S-boxes. The end bits are the two 
left-hand bits and the two right-hand bits, which are shared with adjacent S-boxes.

2.  

The four output bits from each S-box affect six different S-boxes on the next round, and no two 
affect the same S-box.

3.  

For two S-boxes j, k, if an output bit from S
j
 affects a middle bit of S

k
 on the next round, then an 

output bit from S
k
 cannot affect a middle bit of S

j
. This implies that for j = k, an output bit from 

S
j
 must not affect a middle bit of S

j
.

These criteria are intended to increase the diffusion of the algorithm.

Number of Rounds

The cryptographic strength of a Feistel cipher derives from three aspects of the design: the number of 
rounds, the function F, and the key schedule algorithm. Let us look first at the choice of the number of 
rounds.

The greater the number of rounds, the more difficult it is to perform cryptanalysis, even for a relatively 
weak F. In general, the criterion should be that the number of rounds is chosen so that known 
cryptanalytic efforts require greater effort than a simple brute-force key search attack. This criterion was 
certainly used in the design of DES. Schneier [SCHN96] observes that for 16-round DES, a differential 
cryptanalysis attack is slightly less efficient than brute force: the differential cryptanalysis attack 

requires 255.1 operations,
[9]

 whereas brute force requires 255. If DES had 15 or fewer rounds, 
differential cryptanalysis would require less effort than brute-force key search.

[9] Recall that differential cryptanalysis of DES requires 247 chosen plaintext. If all you have to work with is known plaintext, 
then you must sort through a large quantity of known plaintext-ciphertext pairs looking for the useful ones. This brings the 
level of effort up to 255.1.
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This criterion is attractive because it makes it easy to judge the strength of an algorithm and to compare 
different algorithms. In the absence of a cryptanalytic breakthrough, the strength of any algorithm that 
satisfies the criterion can be judged solely on key length.
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Design of Function F

The heart of a Feistel block cipher is the function F. As we have seen, in DES, this function relies on the 
use of S-boxes. This is also the case for most other symmetric block ciphers, as we shall see in Chapter 
4. However, we can make some general comments about the criteria for designing F. After that, we look 
specifically at S-box design.

Design Criteria for F

The function F provides the element of confusion in a Feistel cipher. Thus, it must be difficult to 
"unscramble" the substitution performed by F. One obvious criterion is that F be nonlinear, as we 
discussed previously. The more nonlinear F, the more difficult any type of cryptanalysis will be. There 
are several measures of nonlinearity, which are beyond the scope of this book. In rough terms, the 
more difficult it is to approximate F by a set of linear equations, the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the algorithm to have good 
avalanche properties. Recall that, in general, this means that a change in one bit of the input should 
produce a change in many bits of the output. A more stringent version of this is the strict avalanche 
criterion (SAC) [WEBS86], which states that any output bit j of an S-box should change with 
probability 1/2 when any single input bit i is inverted for all i, j. Although SAC is expressed in terms of S-
boxes, a similar criterion could be applied to F as a whole. This is important when considering designs 
that do not include S-boxes.

Another criterion proposed in [WEBS86] is the bit independence criterion (BIC), which states that 
output bits j and k should change independently when any single input bit i is inverted, for all i, j, and k. 
The SAC and BIC criteria appear to strengthen the effectiveness of the confusion function.

S-Box Design

One of the most intense areas of research in the field of symmetric block ciphers is that of S-box design. 

The papers are almost too numerous to count.
[10]

 Here we mention some general principles. In 
essence, we would like any change to the input vector to an S-box to result in random-looking changes 
to the output. The relationship should be nonlinear and difficult to approximate with linear functions.

[10] A good summary of S-box design studies through early 1996 can be found in [SCHN96].

One obvious characteristic of the S-box is its size. An n x m S-box has n input bits and m output bits. 
DES has 6 x 4 S-boxes. Blowfish, described in Chapter 6, has 8 x 32 S-boxes. Larger S-boxes, by and 
large, are more resistant to differential and linear cryptanalysis [SCHN96]. On the other hand, the larger 
the dimension n, the (exponentially) larger the lookup table. Thus, for practical reasons, a limit of n 
equal to about 8 to 10 is usually imposed. Another practical consideration is that the larger the S-box, 
the more difficult it is to design it properly.

S-boxes are typically organized in a different manner than used in DES. An n x m S-box typically 
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consists of 2n rows of m bits each. The n bits of input select one of the rows of the S-box, and the m 
bits in that row are the output. For example, in an 8 x 32 S-box, if the input is 00001001, the output 
consists of the 32 bits in row 9 (the first row is labeled row 0).
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Mister and Adams [MIST96] propose a number of criteria for S-box design. Among these are that the S-
box should satisfy both SAC and BIC. They also suggest that all linear combinations of S-box columns 
should be bent. Bent functions are a special class of Boolean functions that are highly nonlinear 
according to certain mathematical criteria [ADAM90]. There has been increasing interest in designing 
and analyzing S-boxes using bent functions.

A related criterion for S-boxes is proposed and analyzed in [HEYS95]. The authors define the 
guaranteed avalanche (GA) criterion as follows: An S-box satisfies GA of order π if, for a 1-bit input 
change, at least π output bits change. The authors conclude that a GA in the range of order 2 to order 5 
provides strong diffusion characteristics for the overall encryption algorithm.

For larger S-boxes, such as 8 x 32, the question arises as to the best method of selecting the S-box 
entries in order to meet the type of criteria we have been discussing. Nyberg, who has written a lot 
about the theory and practice of S-box design, suggests the following approaches (quoted in 
[ROBS95b]):

●     Random: Use some pseudorandom number generation or some table of random digits to 
generate the entries in the S-boxes. This may lead to boxes with undesirable characteristics for 
small sizes (e.g., 6 x 4) but should be acceptable for large S-boxes (e.g., 8 x 32).

●     Random with testing: Choose S-box entries randomly, then test the results against various 
criteria, and throw away those that do not pass.

●     Human-made: This is a more or less manual approach with only simple mathematics to support 
it. It is apparently the technique used in the DES design. This approach is difficult to carry 
through for large S-boxes.

●     Math-made: Generate S-boxes according to mathematical principles. By using mathematical 
construction, S-boxes can be constructed that offer proven security against linear and differential 
cryptanalysis, together with good diffusion.

A variation on the first technique is to use S-boxes that are both random and key dependent. An 
example of this approach is Blowfish, described in Chapter 6, which starts with S-boxes filled with 
pseudorandom digits and then alters the contents using the key. A tremendous advantage of key-
dependent S-boxes is that, because they are not fixed, it is impossible to analyze the S-boxes ahead of 
time to look for weaknesses.

Key Schedule Algorithm

A final area of block cipher design, and one that has received less attention than S-box design, is the 
key schedule algorithm. With any Feistel block cipher, the key is used to generate one subkey for each 
round. In general, we would like to select subkeys to maximize the difficulty of deducing individual 
subkeys and the difficulty of working back to the main key. No general principles for this have yet been 
promulgated.

Hall suggests [ADAM94] that, at minimum, the key schedule should guarantee key/ciphertext Strict 
Avalanche Criterion and Bit Independence Criterion.
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3.6. Recommended Reading

There is a wealth of information on symmetric encryption. Some of the more worthwhile references are 
listed here. An essential reference work is [SCHN96]. This remarkable work contains descriptions of 
virtually every cryptographic algorithm and protocol published up to the time of the writing of the book. 
The author pulls together results from journals, conference proceedings, government publications, and 
standards documents and organizes these into a comprehensive and comprehensible survey. Another 
worthwhile and detailed survey is [MENE97]. A rigorous mathematical treatment is [STIN02].

The foregoing references provide coverage of public-key as well as symmetric encryption.

Perhaps the most detailed description of DES is [SIMO95]; the book also contains an extensive 
discussion of differential and linear cryptanalysis of DES. [BARK91] provides a readable and interesting 
analysis of the structure of DES and of potential cryptanalytic approaches to DES. [EFF98] details the 
most effective brute-force attack on DES. [COPP94] looks at the inherent strength of DES and its ability 
to stand up to cryptanalysis.

BARK91 Barker, W. Introduction to the Analysis of the Data Encryption Standard 
(DES). Laguna Hills, CA: Aegean Park Press, 1991.

COPP94 Coppersmith, D. "The Data Encryption Standard (DES) and Its Strength 
Against Attacks." IBM Journal of Research and Development, May 1994.

EFF98 Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research, 
Wiretap Politics, and Chip Design. Sebastopol, CA: O'Reilly, 1998

MENE97 Menezes, A.; van Oorschot, P.; and Vanstone, S. Handbook of Applied 
Cryptography. Boca Raton, FL: CRC Press, 1997.

SCHN96 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMO95 Simovits, M. The DES: An Extensive Documentation and Evaluation. Laguna 
Hills, CA: Aegean Park Press, 1995.

STIN02 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 
2002.
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3.7. Key Terms, Review Questions, and Problems

Key Terms

avalanche effect

block cipher

confusion

Data Encryption Standard (DES)

differential cryptanalysis

diffusion

Feistel cipher

irreversible mapping

key

linear cryptanalysis

permutation

product cipher

reversible mapping

round

round function

subkey

substitution
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Review Questions
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3.1 Why is it important to study the Feistel cipher?

3.2 What is the difference between a block cipher and a stream cipher?

3.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind 
shown in Table 3.1?

3.4 What is a product cipher?

3.5 What is the difference between diffusion and confusion?

3.6 Which parameters and design choices determine the actual algorithm of a Feistel 
cipher?

3.7 What is the purpose of the S-boxes in DES?

3.8 Explain the avalanche effect.

3.9 What is the difference between differential and linear cryptanalysis?

Problems

3.1 a.  
In Section 3.1, under the subsection on the motivation for the Feistel cipher 
structure, it was stated that, for a block of n bits, the number of different 
reversible mappings for the ideal block cipher is 2n!. Justify.

b.  

In that same discussion, it was stated that for the ideal block cipher, which 

allows all possible reversible mappings, the size of the key is n x 2n bits. But, if 

there are 2n! possible mappings, it should take log2 2
n! bits to discriminate 

among the different mappings, and so the key length should be log2 2
n!. 

However, log2 2
n! <n x 2n. Explain the discrepancy.
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3.2 Consider a Feistel cipher composed of 16 rounds with block length 128 bits and key 
length 128 bits. Suppose that, for a given k, the key scheduling algorithm determines 
values for the first 8 round keys, k1, k2, ..., k8, and then sets

k9 = k8, k10 = k7, k11 = k6, ..., k16 = k1

Suppose you have a ciphertext c. Explain how, with access to an encryption oracle, 
you can decrypt c and determine m using just a single oracle query. This shows that 
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be 
thought of as a device that, when given a plaintext, returns the corresponding 
ciphertext. The internal details of the device are not known to you and you cannot 
break open the device. You can only gain information from the oracle by making 
queries to it and observing its responses.)

3.3 Consider a block encryption algorithm that encrypts blocks of length n, and let N = 2n. 
Say we have t plaintext-ciphertext pairs Pi, Ct

 = E(K, Pi), where we assume that the 

key K selects one of the N! possible mappings. Imagine that we wish to find K by 

exhaustive search. We could generate key K' and test whether C = E(K', Pi) for 1  i 

 t. If K' encrypts each Pi to its proper Ci then we have evidence that K = K'. 

However, it may be the case that the mappings E(K, ·) and E(K', ·) exactly agree on 
the t plaintext-ciphertext pairs Pi, Ci and agree on no other pairs.

a.  

What is the probability that E(K, ·) and E(K', ·) are in fact distinct mappings?

b.  

What is the probability that E(K, ·) and E(K', ·) agree on another t' plaintext-

ciphertext pairs where 0  t'  N - t?

3.4 Let π be a permutation of the integers 0, 1, 2, ... (2n - 1) such that π(m) gives the 

permuted value of m, 0  m  2n. Put another way, π maps the set of n-bit integers 
into itself and no two integers map into the same integer. DES is such a permutation 
for 64-bit integers. We say that π has a fixed point at m if π(m) = m. That is, if π is an 
encryption mapping, then a fixed point corresponds to a message that encrypts to 
itself. We are interested in the probability that π has no fixed points. Show the 
somewhat unexpected result that over 60% of mappings will have at least one fixed 
point.
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3.5 Consider the substitution defined by row 1 of S-box S1 in Table 3.3. Show a block 

diagram similar to Figure 3.1 that corresponds to this substitution.
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3.6 Compute the bits number 1, 16, 33, and 48 at the output of the first round of the DES 
decryption, assuming that the ciphertext block is composed of all ones and the 
external key is composed of all ones.

3.7 Suppose the DES F function mapped every 32-bit input R, regardless of the value of 
the input K, to

a.  

32-bit string of ones,

b.  

bitwise complement of R.

Hint: Use the following properties of the XOR operation:

1.  

What function would DES then compute?

2.  

What would the decryption look like?

(A  B)  C = A  (B  C)

A  A = 0

A  0 = A

A  1 = bitwise complement of A

where

A, B, C are n-bit strings of bits

0 is an n-bit string of zeros

1 is an n-bit string of one
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3.8 This problem provides a numerical example of encryption using a one-round version of 
DES. We start with the same bit pattern for the key K and the plaintext, namely:

in hexadecimal notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F

in binary notation: 0000 0001 0010 0011 0100 0101 0110 0111

 1000 1001 1010 1011 0100 1101 1110 1111

 
a.  

Derive K1, the first-round subkey.

b.  

Derive L0, R0.

c.  

Expand R0 to get E[R0], where E[·] is the expansion function of Figure 3.8.

d.  

Calculate A = E[R0]  K1.

e.  

Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding 
S-box substitutions.

f.  

Concatenate the results of (e) to get a 32-bit result, B.

g.  

Apply the permutation to get P(B).

h.  

Calculate R1 = P(B)  L0.

i.  

Write down the ciphertext.
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3.9 Show that DES decryption is, in fact, the inverse of DES encryption.

3.10 The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make 
the encryption process invertible by simply running the ciphertext back through the 
algorithm with the key order reversed. This was demonstrated in Problem 3.7. 
However, it still may not be entirely clear why the 32-bit swap is needed. To 
demonstrate why, solve the following exercises. First, some notation:

A||B = the concatenation of the bit strings A and B

T
i
(R||L) = the transformation defined by the ith iteration of the encryption 

algorithm, for 1  I  16

TD
i
(R||L) = the transformation defined by the ith iteration of the decryption 

algorithm, for 1  i  16

T17(R||L) = L||R. This transformation occurs after the sixteenth iteration of the 
encryption algorithm.
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a.  

Show that the composition TD1(IP(IP-1(T17(T16(L15||R15))))) is equivalent to 

the transformation that interchanges the 32-bit halves, L15 and R15. That is, 

show that

TD1(IP(IP-1(T17(T16(L15||R15))))) = R15||L15

b.  

Now suppose that we did away with the final 32-bit swap in the encryption 
algorithm. Then we would want the following equality to hold:

TD1(IP(IP-1(T16(L15||R15))))) = R15||L15

Does it?

3.11 Compare the initial permutation table (Table 3.2a) with the permuted choice one table 
(Table 3.4b). Are the structures similar? If so, describe the similarities. What 
conclusions can you draw from this analysis?

3.12 When using the DES algorithm for decryption, the 16 keys (K1, K2, ..., K16) are used 

in reverse order. Therefore, the right-hand side of Figure 3.5 is no longer valid. Design 
a key-generation scheme with the appropriate shift schedule (analogous to Table 
3.4d) for the decryption process.
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3.13 a.  
Let X' be the bitwise complement of X. Prove that if the complement of the 
plaintext block is taken and the complement of an encryption key is taken, 
then the result of DES encryption with these values is the complement of the 
original ciphertext. That is,

If Y = E(K, X)

Then Y' = E(K', X')

Hint: Begin by showing that for any two bit strings of equal length, A and B, (A 

 B)' = A  x B.

b.  

It has been said that a brute-force attack on DES requires searching a key 
space of 256keys. Does the result of part (a) change that?

3.14 Show that in DES the first 24 bits of each subkey come from the same subset of 28 
bits of the initial key and that the second 24 bits of each subkey come from a disjoint 
subset of 28 bits of the initial key.

3.15 For any block cipher, the fact that it is a nonlinear function is crucial to its security. To 
see this, suppose that we have a linear block cipher EL that encrypts 128-bit blocks of 
plaintext into 128-bit blocks of ciphertext. Let EL(k, m) denote the encryption of a 128-
bit message m under a key k (the actual bit length of k is irrelevant). Thus

EL(k, [m1  m2]) = EL(k, m1)  EL(k, m1) for all 128-bit patterns m1, m2

Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext 
without knowledge of the secret key k. (A "chosen ciphertext" means that an 
adversary has the ability to choose a ciphertext and then obtain its decryption. Here, 
you have 128 plaintext/ciphertext pairs to work with and you have the ability to chose 
the value of the ciphertexts.)

Note: The following problems refer to simplified DES, described in Appendix C.

3.16 Refer to Figure C.2, which depicts key generation for S-DES.

a.  

How important is the initial P10 permutation function?

b.  

How important are the two LS-1 shift functions?
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3.17 The equations for the variables q and r for S-DES are defined in the section on S-DES 
analysis. Provide the equations for s and t.

[Page 94]

3.18 Using S-DES, decrypt the string (10100010) using the key (0111111101) by hand. 
Show intermediate results after each function (IP, F

k
, SW, F

k
, IP-1). Then decode the 

first 4 bits of the plaintext string to a letter and the second 4 bits to another letter 
where we encode A through P in base 2 (i.e., A = 0000, B = 0001,..., P = 1111).

Hint: As a midway check, after the application of SW, the string should be (00010011).

Programming Problems

3.19 Create software that can encrypt and decrypt using a general substitution block cipher.

3.20 Create software that can encrypt and decrypt using S-DES. Test data: Use plaintext, 
ciphertext, and key of Problem 3.15.
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The next morning at daybreak, Star flew indoors, seemingly keen for a lesson. I said, 
"Tap eight." She did a brilliant exhibition, first tapping it in 4, 4, then giving me a hasty 
glance and doing it in 2, 2, 2, 2, before coming for her nut.

It is astonishing that Star learned to count up to 8 with no difficulty, and of her own 
accord discovered that each number could be given with various different divisions, this 
leaving no doubt that she was consciously thinking each number. In fact, she did mental 
arithmetic, although unable, like humans, to name the numbers. But she learned to 
recognize their spoken names almost immediately and was able to remember the sounds 
of the names. Star is unique as a wild bird, who of her own free will pursued the science 
of numbers with keen interest and astonishing intelligence.

Living with Birds, Len Howard
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Key Points

●     A field is a set of elements on which two arithmetic operations (addition and 
multiplication) have been defined and which has the properties of ordinary 
arithmetic, such as closure, associativity, commutativity, distributivity, and having 
both additive and multiplicative inverses.

●     Modular arithmetic is a kind of integer arithmetic that reduces all numbers to one of 
a fixed set [0...n 1] for some number n. Any integer outside this range is reduced to 
one in this range by taking the remainder after division by n.

●     The greatest common divisor of two integers is the largest positive integer that 
exactly divides both integers.

●     Finite fields are important in several areas of cryptography. A finite field is simply a 
field with a finite number of elements. It can be shown that the order of a finite field 

(number of elements in the field) must be a power of a prime pn, where n is a 
positive integer.

●     Finite fields of order p can be defined using arithmetic mod p.

●     Finite fields of order pn, for n > 1 can be defined using arithmetic over polynomials.

 
Finite fields have become increasingly important in cryptography. A number of cryptographic algorithms 
rely heavily on properties of finite fields, notably the Advanced Encryption Standard (AES) and elliptic 
curve cryptography.

The chapter begins with a brief overview of the concepts of group, ring, and field. This section is 
somewhat abstract; the reader may prefer to quickly skim this section on a first reading. Next, we need 
some elementary background in modular arithmetic and the Euclidean algorithm. We are then ready to 
discuss finite fields of the form GF(p), where p is a prime number. Next, we need some additional 
background, this time in polynomial arithmetic. The chapter concludes with a discussion of finite fields of 

the form GF(2n) where n is a positive integer.
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The concepts and techniques of number theory are quite abstract, and it is often difficult to grasp them 
intuitively without examples [RUBI97]. Accordingly, this chapter and Chapter 8 include a number of 
examples, each of which is highlighted in a shaded box.
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4.1. Groups, Rings, and Fields

Groups, rings, and fields are the fundamental elements of a branch of mathematics known as abstract 
algebra, or modern algebra. In abstract algebra, we are concerned with sets on whose elements we can 
operate algebraically; that is, we can combine two elements of the set, perhaps in several ways, to 
obtain a third element of the set. These operations are subject to specific rules, which define the nature 
of the set. By convention, the notation for the two principal classes of operations on set elements is 
usually the same as the notation for addition and multiplication on ordinary numbers. However, it is 
important to note that, in abstract algebra, we are not limited to ordinary arithmetical operations. All 
this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, ·} is a set of elements with a binary operation, denoted by ·, 
that associates to each ordered pair (a, b) of elements in G an element (a · b) in G, such that the 

following axioms are obeyed:
[1]

[1] The operator · is generic and can refer to addition, multiplication, or some other mathematical operation.

(A1) Closure: If a and b belong to G, then a · b is also in G.

(A2) Associative: a · (b · c) = (a · b) · c for all a, b, c in G.

(A3) Identity element: There is an element e in G such that a · e = e · a = a for all a in G.

(A4) Inverse element: For each a in G there is an element a' in G such that a · a' = a' · a = e.

 
Let N

n
 denote a set of n distinct symbols that, for convenience, we represent as {1,2,...,n}. 

A permutation of n distinct symbols is a one-to-one mapping from N
n
 to N

n
. Define S

n
 to be 

the set of all permutations of n distinct symbols. Each element of S
n
 is represented by a 

permutation of the integers in {1,2,...,n}. It is easy to demonstrate that S
n
 is a group:
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A1: If π, ρ  S
n
, then the composite mapping π · ρ is formed by permuting the elements 

of ρ according to the permutation π. For example, {3,2,1} · {1,3,2} = {2,3,1}. 
Clearly, π · ρ  S

n
.

A2: The composition of mappings is also easily seen to be associative.
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A3: The identity mapping is the permutation that does not alter the order of the n 
elements. For S

n
, the identity element is {1,2,...,n}.

A4: For any π  S
n
, the mapping that undoes the permutation defined by π is the 

inverse element for π. There will always be such an inverse. For example {2,3,1} · 
{3,1,2} = {1,2,3}

 

 
If a group has a finite number of elements, it is referred to as a finite group, and the order of the 
group is equal to the number of elements in the group. Otherwise, the group is an infinite group.

A group is said to be abelian if it satisfies the following additional condition:

(A5) Commutative: a · b = b · a for all a, b in G.

 
The set of integers (positive, negative, and 0) under addition is an abelian group. The set 
of nonzero real numbers under multiplication is an abelian group. The set S

n
 from the 

preceding example is a group but not an abelian group for n > 2.

 
When the group operation is addition, the identity element is 0; the inverse element of a is a; and 
subtraction is defined with the following rule: a b = a + (b).

Cyclic Group

We define exponentiation within a group as repeated application of the group operator, so that a3 = a · 

a · a. Further, we define a0 = e, the identity element; and a-n = (a')n. A group G is cyclic if every 

element of G is a power ak (k is an integer) of a fixed element a  G. The element a is said to generate 
the group G, or to be a generator of G. A cyclic group is always abelian, and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element 1. In this 
case, powers are interpreted additively, so that n is the nth power of 1.

 
Rings

A ring R, sometimes denoted by {R, +, x}, is a set of elements with two binary operations, called 

addition and multiplication,
[2]

 such that for all a, b, c in R the following axioms are obeyed:
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[2] Generally, we do not use the multiplication symbol, x, but denote multiplication by the concatenation of two elements.

(A1-A5) R is an abelian group with respect to addition; that is, R satisfies axioms A1 through A5. For 
the case of an additive group, we denote the identity element as 0 and the inverse of a as a.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in 
R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, c in R.

(M3) Distributive laws: a(b + c) = ab + ac for all a, b, c in R.  
(a + b)c = ac + bc for all a, b, c in R.
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In essence, a ring is a set in which we can do addition, subtraction [a b = a + (-b)], and multiplication 
without leaving the set.

With respect to addition and multiplication, the set of all n-square matrices over the real 
numbers is a ring.

 
A ring is said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

 
Let S be the set of even integers (positive, negative, and 0) under the usual operations of 
addition and multiplication. S is a commutative ring. The set of all n-square matrices 
defined in the preceding example is not a commutative ring.

 
Next, we define an integral domain, which is a commutative ring that obeys the following axioms:

(M5) Multiplicative identity: There is an element 1 in R such that a1 = 1a = a for all a in R.

(M6) No zero divisors: If a, b in R and ab = 0, then either a = 0 or b = 0.

 
Let S be the set of integers, positive, negative, and 0, under the usual operations of 
addition and multiplication. S is an integral domain.
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Fields

A field F, sometimes denoted by {F, +, x}, is a set of elements with two binary operations, called 
addition and multiplication, such that for all a, b, c in F the following axioms are obeyed:

(A1M6) F is an integral domain; that is, F satisfies axioms A1 through A5 and M1 through M6.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element a-1 in F such that aa-1 = (a-

1)a = 1.

 
In essence, a field is a set in which we can do addition, subtraction, multiplication, and division without 
leaving the set. Division is defined with the following rule: a/b = a(b-1).

Familiar examples of fields are the rational numbers, the real numbers, and the complex 
numbers. Note that the set of all integers is not a field, because not every element of the 
set has a multiplicative inverse; in fact, only the elements 1 and -1 have multiplicative 
inverses in the integers.

 
Figure 4.1 summarizes the axioms that define groups, rings, and fields.
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Figure 4.1. Group, Ring, and Field

[View full size image]
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4.2. Modular Arithmetic

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get an integer 
quotient q and an integer remainder r that obey the following relationship:

Equation 4-1 

 
where  x  is the largest integer less than or equal to x.

Figure 4.2 demonstrates that, given a and positive n, it is always possible to find q and r that satisfy the 
preceding relationship. Represent the integers on the number line; a will fall somewhere on that line 
(positive a is shown, a similar demonstration can be made for negative a). Starting at 0, proceed to n, 

2n, up to qn such that qn  a and (q + 1)n > a. The distance from qn to a is r, and we have found the 
unique values of q and r. The remainder r is often referred to as a residue.

Figure 4.2. The Relationship a = qn + r, 0  r < n

[View full size image]

 
a = 11; n = 7; 11 = 1 x 7 + 4; r = 4 q = 1

a = -11; n = 7; -11 = (-2) x 7 + 3; r = 3 q = -2

 
If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by 
n. The integer n is called the modulus. Thus, for any integer a, we can always write:

a =  a/n  x n + (a mod n)

11 mod 7 = 4; -11 mod 7 = 3
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Two integers a and b are said to be congruent modulo n, if (a mod n) = (b mod n). This is written as 

a  b (mod n).
[3]

[3] We have just used the operator mod in two different ways: first as a binary operator that produces a remainder, as in the 
expression a mod b; second as a congruence relation that shows the equivalence of two integers, as in the expression To 
distinguish the two uses, the mod term is enclosed in parentheses for a congruence relation; this is common but not universal 
in the literature. See Appendix D for a further discussion.

73  4 (mod 23); 21  -9 (mod 10)
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Divisors

We say that a nonzero b divides a if a = mb for some m, where a, b, and m are integers. That is, b 
divides a if there is no remainder on division. The notation is commonly used to mean b divides a. Also, 
if b|a, we say that b is a divisor of a.

The positive divisors of 24 are 1, 2, 3, 4, 6, 8, 12, and 24.

 
The following relations hold:

●     If a|1, then a = ±1.
●     If a|b and b|a, then a = ±b.

●     Any b  0 divides 0.
●     If b|g and b|h, then b|(mg + nh) for arbitrary integers m and n.

To see this last point, note that

If b|g, then g is of the form g = b x g1 for some integers g1.

If b|h, then h is of the form h = b x h1 for some integers h1.

So

mg + nh = mbg1 + nbh1 = b x (mg1 + nh1)

and therefore b divides mg + nh.
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b = 7; g = 14; h = 63; m = 3; n = 2.

7|14 and 7|63. To show: 7|(3 x 14 + 2 x 63)

We have (3 x 14 + 2 x 63) = 7(3 x 2 + 2 x 9)

And it is obvious that 7|(7(3 x 2 + 2 x 9))

 
Note that if a  0 (mod n), then n|a.

Properties of Congruences

Congruences have the following properties:

1.  

a  b (mod n) if n|(a b).

2.  

a  b (mod n) implies b  a (mod n)..

3.  

a  b (mod n) and b  c (mod n) imply a  c (mod n).

To demonstrate the first point, if n|(a b), then (a b) = kn for some k. So we can write a = b + kn. 
Therefore, (a mod n) = (reminder when b + kn is divided by n) = (reminder when b is divided by n) = 
(b mod n)

23  8 (mod 5) because 23 8 = 15 = 5 3

11  5 (mod 8) because 11 5 = 16 = 8 x (2)

81  0 (mod 27) because 81 0 = 81 = 27 x 3

 
The remaining points are as easily proved.
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Modular Arithmetic Operations

Note that, by definition (Figure 4.2), the (mod n) operator maps all integers into the set of integers {0, 
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1,... (n 1)}. This suggests the question: Can we perform arithmetic operations within the confines of this 
set? It turns out that we can; this technique is known as modular arithmetic.

Modular arithmetic exhibits the following properties:

1.  

[(a mod n) + (b mod n)] mod n = (a + b) mod n

2.  

[(a mod n) (b mod n)] mod n = (a b) mod n

3.  

[(a mod n) x (b mod n)] mod n = (a x b) mod n

We demonstrate the first property. Define (a mod n) = r
a
 and (b mod n) = r

b
. Then we can write a = r

a
 

+ jn for some integer j and b = r
b
 + kn for some integer k. Then

(a + b) mod n = (r
a
 + jn + r

b
 +kn) mod n

= (r
a
 + r

b
 (k + j)n) mod n

= (r
a
 + r

b
) mod n

= [(a mod n] + (b mod n)] mod n

The remaining properties are as easily proved. Here are examples of the three properties:

11 mod 8 = 3; 15 mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 
2  
(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) (15 mod 8)] mod 8 = 4 mod 8 = 4  
(11 15) mod 8 = 4 mod 8 = 4

[(11 mod 8) x (15 mod 8)] mod 8 = 21 mod 8 = 5  
(11 x 15) mod 8 = 165 mod 8 = 5

 
Exponentiation is performed by repeated multiplication, as in ordinary arithmetic. (We have more to say 
about exponentiation in Chapter 8.)
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To find 117 mod 13, we can proceed as follows:

112 = 121  4 (mod 13)

114 = (112)2  42  3 (mod 13)

117  11 x 4 x 3  132  2 (mod 13)

 
Thus, the rules for ordinary arithmetic involving addition, subtraction, and multiplication carry over into 
modular arithmetic.
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Table 4.1 provides an illustration of modular addition and multiplication modulo 8. Looking 
at addition, the results are straightforward and there is a regular pattern to the matrix. 
Both matrices are symmetric about the main diagonal, in conformance to the commutative 
property of addition and multiplication. As in ordinary addition, there is an additive inverse, 
or negative, to each integer in modular arithmetic. In this case, the negative of an integer 
x is the integer y such that (x + y) mod 8 = 0. To find the additive inverse of an integer in 
the left-hand column, scan across the corresponding row of the matrix to find the value 0; 
the integer at the top of that column is the additive inverse; thus (2 + 6) mod 8 = 0. 
Similarly, the entries in the multiplication table are straightforward. In ordinary arithmetic, 
there is a multiplicative inverse, or reciprocal, to each integer. In modular arithmetic mod 
8, the multiplicative inverse of x is the integer y such that (x x y) mod 8 = 1 mod 8. Now, 
to find the multiplicative inverse of an integer from the multiplication table, scan across the 
matrix in the row for that integer to find the value 1; the integer at the top of that column 
is the multiplicative inverse; thus (3 x 3) mod 8 = 1. Note that not all integers mod 8 have 
a multiplicative inverse; more about that later.

Table 4.1. Arithmetic Modulo 8

[View full size image]
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Properties of Modular Arithmetic

Define the set Z
n
 as the set of nonnegative integers less than n:

Z
n
 = {0, 1,...,(n 1)}

 
This is referred to as the set of residues, or residue classes modulo n. To be more precise, each 
integer in Z

n
 represents a residue class. We can label the residue classes modulo n as [0], [1], [2],...,[n 

1], where

[r] = {a: a is an integer, a  r (mod n)}
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The residue classes modulo 4 are

 [0] = { ..., 16, 12, 8, 4, 0, 4, 8, 12, 16,... }

 [1] = { ..., 15, 11, 7, 3, 1, 5, 9, 13, 17,... }

 [2] = { ..., 14, 10, 6, 2, 2, 6, 10, 14, 18,... }

 [3] = { ..., 13, 9, 5, 1, 3, 7, 11, 15, 19,... }

 
Of all the integers in a residue class, the smallest nonnegative integer is the one usually used to 
represent the residue class. Finding the smallest nonnegative integer to which k is congruent modulo n 
is called reducing k modulo n.

If we perform modular arithmetic within Z
n
, the properties shown in Table 4.2 hold for integers in Z

n
. 

Thus, Z
n
 is a commutative ring with a multiplicative identity element (Figure 4.1).

Table 4.2. Properties of Modular Arithmetic for Integers in Z
n

Property Expression

Commutative laws (w + x) mod n = (x + w) mod n  
(w x x) mod n = (x x w) mod n

Associative laws [(w + x) + y] mod n = [w + (x + y)] mod n  
[(w x x) x y] mod n = [w x (x x y)] mod n

Distributive laws [w + (x + y)] mod n = [(w x x) + (w x y)] mod n  
[w + (x x y)] mod n = [(w + x) x (w + y)] mod n

Identities (0 + w) mod n = w mod n  
(1 + w) mod n = w mod n

Additive inverse (-w) For each w  Z
n
, there exists a z such that w + z  0 mod n

 
There is one peculiarity of modular arithmetic that sets it apart from ordinary arithmetic. First, observe 
that, as in ordinary arithmetic, we can write the following:

Equation 4-2 
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(5 + 23)  (5 + 7)(mod 8}; 23  7 (mod 8)
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Equation (4.2) is consistent with the existence of an additive inverse. Adding the additive inverse of a to 
both sides of Equation (4.2), we have:

((a) + a + b)  ((a) + a + c)(mod n)

b  c (mod n)

However, the following statement is true only with the attached condition:

Equation 4-3 

 
where the term relatively prime is defined as follows: two integers are relatively prime if their only 
common positive integer factor is 1. Similar to the case of Equation (4.2), we can say that Equation 
(4.3) is consistent with the existence of a multiplicative inverse. Applying the multiplicative inverse of a 
to both sides of Equation (4.2), we have:

((a1)ab)  ((a1)ac)(mod n)

b  c (mod n)

To see this, consider an example in which the condition of Equation (4.3) does not hold. 
The integers 6 and 8 are not relatively prime, since they have the common factor 2. We 
have the following:

6 x 3 = 18  2 (mod 8)

6 x 7 = 42  2 (mod 8)

Yet 3  7 (mod 8).

 
The reason for this strange result is that for any general modulus n, a multiplier a that is applied in turn 
to the integers 0 through (n 1) will fail to produce a complete set of residues if a and n have any factors 
in common.
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With a = 6 and n = 8,

 Z8 0 1 2 3 4 5 6 7

 Multiply by 6 0 6 12 18 24 30 36 42

 Residues 0 6 4 2 0 6 4 2

 
Because we do not have a complete set of residues when multiplying by 6, more than one 
integer in Z8 maps into the same residue. Specifically, 6 x 0 mod 8 = 6 x 4 mod 8; 6 x 1 

mod 8 = 6 x 5 mod 8; and so on. Because this is a many-to-one mapping, there is not a 
unique inverse to the multiply operation.

However, if we take a = 5 and n = 8, whose only common factor is 1,

 Z8 0 1 2 3 4 5 6 7

 Multiply by 6 0 5 10 15 20 25 30 35

 Residues 0 5 2 7 4 1 6 3

 
The line of residues contains all the integers in Z8, in a different order.
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In general, an integer has a multiplicative inverse in Z
n
 if that integer is relatively prime to n. Table 4.1c 

shows that the integers 1, 3, 5, and 7 have a multiplicative inverse in Z8, but 2, 4, and 6 do not.
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4.3. The Euclidean Algorithm

One of the basic techniques of number theory is the Euclidean algorithm, which is a simple procedure for 
determining the greatest common divisor of two positive integers.

Greatest Common Divisor

Recall that nonzero b is defined to be a divisor of a if a = mb for some m, where a, b, and m are 
integers. We will use the notation gcd(a, b) to mean the greatest common divisor of a and b. The 
positive integer c is said to be the greatest common divisor of a and b if

1.  

c is a divisor of a and of b;

2.  

any divisor of a and b is a divisor of c.

An equivalent definition is the following:

gcd(a, b) = max[k, such that k|a and k|b]

Because we require that the greatest common divisor be positive, gcd(a, b) = gcd(a, b) = gcd(a, b) = 
gcd(a, b). In general, gcd(a, b) = gcd(|a|, |b|).

gcd(60, 24) = gcd(60, 24) = 12

 
Also, because all nonzero integers divide 0, we have gcd(a, 0) = |a|.

We stated that two integers a and b are relatively prime if their only common positive integer factor is 1. 
This is equivalent to saying that a and b are relatively prime if gcd(a, b) = 1.

8 and 15 are relatively prime because the positive divisors of 8 are 1, 2, 4, and 8, and the positive 
divisors of 15 are 1, 3, 5, and 15, so 1 is the only integer on both lists.

 
Finding the Greatest Common Divisor

The Euclidean algorithm is based on the following theorem: For any nonnegative integer a and any 
positive integer b,
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Equation 4-4 

 
gcd(55, 22) = gcd(22, 55 mod 22) = gcd(22, 11) = 11
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To see that Equation (4.4) works, let d = gcd(a, b). Then, by the definition of gcd, d|a and d|b. For any 
positive integer b, a can be expressed in the form

a = kb + r  r (mod b)

a mod b = r

 
with k, r integers. Therefore, (a mod b) = a kb for some integer k. But because d|b, it also divides kb. 
We also have d|a. Therefore, d|(a mod b). This shows that d is a common divisor of b and (a mod b). 
Conversely, if d is a common divisor of b and (a mod b), then d|kb and thus d|[kb + (a mod b)], which 
is equivalent to d|a. Thus, the set of common divisors of a and b is equal to the set of common divisors 
of b and (a mod b). Therefore, the gcd of one pair is the same as the gcd of the other pair, proving the 
theorem.

Equation (4.4) can be used repetitively to determine the greatest common divisor.

gcd(18, 12) = gcd(12, 6) = gcd(6, 0) = 6

gcd(11, 10) = gcd(10, 1) = gcd(1, 0) = 1

 
The Euclidean algorithm makes repeated use of Equation (4.4) to determine the greatest common 
divisor, as follows. The algorithm assumes a > b > 0. It is acceptable to restrict the algorithm to positive 
integers because gcd(a, b) = gcd(|a|, |b|).

EUCLID(a, b)
1.   A  a; B  b
2.   if B = 0  return  A = gcd(a, b)
3.   R = A mod B
4.   A  B
5.   B  R
6.   goto 2

 
The algorithm has the following progression:
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To find gcd(1970, 1066)

1970 = 1 x 1066 + 904 gcd(1066, 904)

1066 = 1 x 904 + 162 gcd(904, 162)

904 = 5 x 162 + 94 gcd(162, 94)

162 = 1 x 94 + 68 gcd(94, 68)

94 = 1 x 68 + 26 gcd(68, 26)

68 = 2 x 26 + 16 gcd(26, 16)

26 = 1 x 16 + 10 gcd(16, 10)

16 = 1 x 10 + 6 gcd(10, 6)

10 = 1 x 6 + 4 gcd(6, 4)

6 = 1 x 4 + 2 gcd(4, 2)

4 = 2 x 2 + 0 gcd(2, 0)

Therefore, gcd(1970, 1066) = 2

 
The alert reader may ask how we can be sure that this process terminates. That is, how can we be sure 
that at some point B divides A? If not, we would get an endless sequence of positive integers, each one 
strictly smaller than the one before, and this is clearly impossible.
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4.4. Finite Fields of The Form GF(p)

In Section 4.1, we defined a field as a set that obeys all of the axioms of Figure 4.1 and gave some 
examples of infinite fields. Infinite fields are not of particular interest in the context of cryptography. 
However, finite fields play a crucial role in many cryptographic algorithms. It can be shown that the 

order of a finite field (number of elements in the field) must be a power of a prime pn, where n is a 
positive integer. We discuss prime numbers in detail in Chapter 8. Here, we need only say that a prime 
number is an integer whose only positive integer factors are itself and 1. That is, the only positive 
integers that are divisors of p are p and 1.

The finite field of order pn is generally written GF(pn); stands for Galois field, in honor of the 
mathematician who first studied finite fields. Two special cases are of interest for our purposes. For n = 
1, we have the finite field GF(p); this finite field has a different structure than that for finite fields with n 

> 1 and is studied in this section. In Section 4.6, we look at finite fields of the form GF(2n).

Finite Fields of Order p

For a given prime, p, the finite field of order p, GF(p) is defined as the set Z
p
 of integers {0, 1,..., p 1}, 

together with the arithmetic operations modulo p.

Recall that we showed in Section 4.2 that the set Z
n
 of integers {0,1,...,n 1}, together with the 

arithmetic operations modulo n, is a commutative ring (Table 4.2). We further observed that any integer 
in Z

n
 has a multiplicative inverse if and only if that integer is relatively prime to n [see discussion of 

Equation (4.3)].
[4]

 If n is prime, then all of the nonzero integers in Z
n
 are relatively prime to n, and 

therefore there exists a multiplicative inverse for all of the nonzero integers in Z
n
. Thus, we can add the 

following properties to those listed in Table 4.2 for Z
p
:

[4] As stated in the discussion of Equation (4.3), two integers are relatively prime if their only common positive integer 
factor is 1.
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Multiplicative inverse (w1) For each w  Z
p
, w  0, there exists 

a  
z  Z

p
 such that w x z  1 (mod p)
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Because w is relatively prime to p, if we multiply all the elements of Z
p
 by w, the resulting residues are 

all of the elements of Z
p
 permuted. Thus, exactly one of the residues has the value 1. Therefore, there 

is some integer Z
p
 in that, when multiplied by w, yields the residue 1. That integer is the multiplicative 

inverse of w, designated w1. Therefore, Z
p
 is in fact a finite field. Further, Equation (4.3) is consistent 

with the existence of a multiplicative inverse and can be rewritten without the condition:

Equation 4-5 

 
Multiplying both sides of Equation (4.5) by the multiplicative inverse of a, we have:

((a1) x a x b)  ((a1) x a x c)(mod p)

b  c (mod p)

 
The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

Addition Multiplication Inverses

 
In this case, addition is equivalent to the exclusive-OR (XOR) operation, and multiplication 
is equivalent to the logical AND operation.
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Table 4.3 shows GF(7). This is a field of order 7 using modular arithmetic modulo 7. As can 
be seen, it satisfies all of the properties required of a field (Figure 4.1). Compare this table 
with Table 4.1. In the latter case, we see that the set Z8 using modular arithmetic modulo 

8, is not a field. Later in this chapter, we show how to define addition and multiplication 
operations on Z8 in such a way as to form a finite field.

Table 4.3. Arithmetic in GF(7)

(This item is displayed on page 111 in the print version) 

[View full size image]

 

 
Finding the Multiplicative Inverse in GF(p)

It is easy to find the multiplicative inverse of an element in GF(p) for small values of p. You simply 
construct a multiplication table, such as shown in Table 4.3b, and the desired result can be read directly. 
However, for large values of p, this approach is not practical.

If gcd(m, b) = 1, then b has a multiplicative inverse modulo m. That is, for positive integer b < m, there 
exists a b1 < m such that bb1 = 1 mod m. The Euclidean algorithm can be extended so that, in addition 
to finding gcd(m, b), if the gcd is 1, the algorithm returns the multiplicative inverse of b.
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EXTENDED EUCLID(m, b)
1. (A1, A2, A3)  (1, 0, m); (B1, B2, B3)  (0, 1, b)
2. if B3 = 0 return A3 = gcd(m, b); no inverse
3. if B3 = 1 return B3 = gcd(m, b); B2 = b1 mod m

 

4. 

5. (T1, T2, T3)  (A1  QB1, A2  QB2, A3  QB3)
6. (A1, A2, A3)  (B1, B2, B3)
7. (B1, B2, B3)  (T1, T2, T3)
8. goto 2

 
Throughout the computation, the following relationships hold:

 mT1 + bT2 = T3 mA1 + bA2 = A3 mB1 + bB2 = B3

 
To see that this algorithm correctly returns gcd(m, b), note that if we equate A and B in the Euclidean 
algorithm with A3 and B3 in the extended Euclidean algorithm, then the treatment of the two variables 
is identical. At each iteration of the Euclidean algorithm, A is set equal to the previous value of B and B 
is set equal to the previous value of A mod B. Similarly, at each step of the extended Euclidean 
algorithm, A3 is set equal to the previous value of B3, and B3 is set equal to the previous value of A3 
minus the integer quotient of A3 multiplied by B3. This latter value is simply the remainder of A3 divided 
by B3, which is A3 mod B3.
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Note also that if gcd(m, b) = 1, then on the final step we would have B3 = 0 and A3 = 1. Therefore, on 
the preceding step, B3 = 1. But if B3 = 1, then we can say the following:

mB1 + bB2 = B3

mB1 + bB2 = 1

bB2 = 1 mB1

bB2  1 (mod m)

And B2 is the multiplicative inverse of b, modulo m.
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Table 4.4 is an example of the execution of the algorithm. It shows that gcd(1759, 550) = 

1 and that the multiplicative inverse of 550 is 355; that is, 550 x 335  1 (mod 1759).

Table 4.4. Finding the 
Multiplicative Inverse of 550 in 

GF(1759)

Q A1 A2 A3 B1 B2 B3

1 0 1759 0 1 550

3 0 1 550 1 3 109

5 1 3 109 5 16 5

21 5 16 5 106 339 4

1 106 339 4 111 355 1

 

 
For a more detailed proof of this algorithm, see [KNUT97].

Summary

In this section, we have shown how to construct a finite field of order p, where p is prime. Specifically, 
we defined GF(p) with the following properties:

1.  

GF(p) consists of p elements.

2.  

The binary operations + and x are defined over the set. The operations of addition, subtraction, 
multiplication, and division can be performed without leaving the set. Each element of the set 
other than 0 has a multiplicative inverse.

We have shown that the elements of GF(p) are the integers {0, 1,..., p} and that the arithmetic 
operations are addition and multiplication mod p.
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4.5. Polynomial Arithmetic

Before pursuing our discussion of finite fields, we need to introduce the interesting subject of polynomial 
arithmetic. We are concerned with polynomials in a single variable x, and we can distinguish three 
classes of polynomial arithmetic:

●     Ordinary polynomial arithmetic, using the basic rules of algebra
●     Polynomial arithmetic in which the arithmetic on the coefficients is performed modulo p; that is, 

the coefficients are in GF(p)
●     Polynomial arithmetic in which the coefficients are in GF(p), and the polynomials are defined 

modulo a polynomial m(x) whose highest power is some integer n

This section examines the first two classes, and the next section covers the last class.

Ordinary Polynomial Arithmetic

A polynomial of degree n (integer n  0) is an expression of the form

 
where the a

i
 are elements of some designated set of numbers S, called the coefficient set, and a

n
  

0. We say that such polynomials are defined over the coefficient set S.

A zeroth-degree polynomial is called a constant polynomial and is simply an element of the set of 
coefficients. An nth-degree polynomial is said to be a monic polynomial if a

n
 = 1.

In the context of abstract algebra, we are usually not interested in evaluating a polynomial for a 
particular value of x [e.g., f(7)]. To emphasize this point, the variable x is sometimes referred to as the 
indeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, and multiplication. These 
operations are defined in a natural way as though the variable x was an element of S. Division is 
similarly defined, but requires that S be a field. Examples of fields include the real numbers, rational 
numbers, and Z

p
 for p prime. Note that the set of all integers is not a field and does not support 

polynomial division.

Addition and subtraction are performed by adding or subtracting corresponding coefficients. Thus, if
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then addition is defined as
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and multiplication is defined as

 
where

c
k
 = a0bk1 + a1bk1 + ... + ak1b1 + akb0

In the last formula, we treat a
i
 as zero for i > n and b

i
 as zero for i > m. Note that the degree of the 

product is equal to the sum of the degrees of the two polynomials.

As an example, let f(x) = x3 + x2 + 2 and g(x) = x2 x + 1, where S is the set of integers. 
Then

f(x) + g(x) = x3 + 2x2 x + 3

f(x) g(x) = x3 + x + 1

f(x) x g(x) = x5 + 3x2 2x + 2

Figures 4.3a through 4.3c show the manual calculations. We comment on division 
subsequently.

Figure 4.3. Examples of Polynomial Arithmetic
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Polynomial Arithmetic with Coefficients in Zp

Let us now consider polynomials in which the coefficients are elements of some field F. We refer to this 
as a polynomial over the field F. In that case, it is easy to show that the set of such polynomials is a 
ring, referred to as a polynomial ring. That is, if we consider each distinct polynomial to be an element 

of the set, then that set is a ring.
[5]

[5] In fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial ring, but that is of 
no interest in the present context.
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When polynomial arithmetic is performed on polynomials over a field, then division is possible. Note that 
this does not mean that exact division is possible. Let us clarify this distinction. Within a field, given two 
elements a and b, the quotient a/b is also an element of the field. However, given a ring R that is not a 
field, in general division will result in both a quotient and a remainder; this is not exact division.
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Consider the division 5/3 within a set S. If S is the set of rational numbers, which is a field, 
then the result is simply expressed as 5/3 and is an element of S. Now suppose that S is 
the field Z7. In this case, we calculate (using Table 4.3c):

5/3 = (5 x 31) mod 7 = (5 x 5) mod 7 = 4

which is an exact solution. Finally, suppose that S is the set of integers, which is a ring but 
not a field. Then 5/3 produces a quotient of 1 and a remainder of 2:

5/3 = 1 + 2/3

5 = 1 x 3 + 2

Thus, division is not exact over the set of integers.

 
Now, if we attempt to perform polynomial division over a coefficient set that is not a field, we find that 
division is not always defined.

If the coefficient set is the integers, then (5x2)/(3x) does not have a solution, because it 
would require a coefficient with a value of 5/3, which is not in the coefficient set. Suppose 
that we perform the same polynomial division over Z7. Then we have (5x2)/(3x) = 4x 

which is a valid polynomial over Z7.

 
However, as we demonstrate presently, even if the coefficient set is a field, polynomial division is not 
necessarily exact. In general, division will produce a quotient and a remainder:

Equation 4-6 

 
If the degree of f(x) is n and the degree of g(x) is m, (m  n), then the degree of the quotient q(x) m 
n is and the degree of the remainder is at most m - 1. With the understanding that remainders are 
allowed, we can say that polynomial division is possible if the coefficient set is a field.

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remainder r(x) in Equation (4.6). 
That is, r(x) = f(x) mod g(x). If there is no remainder [i.e., r(x) = 0 ], then we can say g(x) divides f
(x), written as g(x)|f(x); equivalently, we can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x).
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For the preceding example and [f(x) = x3 + x2 + 2 and g(x) = x2 x + 1], f(x)/g(x) 
produces a quotient of q(x) = x + 2 and a remainder r(x) = x as shown in Figure 4.3d. This 
is easily verified by noting that

q(x)g(x) + r(x) = (x + 2)(x2 x + 1) + x = (x3 + x2 x + 2) + x

= x3 + x2 + 2 = f(x)

 
For our purposes, polynomials over GF(2) are of most interest. Recall from Section 4.4 that in GF(2), 
addition is equivalent to the XOR operation, and multiplication is equivalent to the logical AND operation. 
Further, addition and subtraction are equivalent mod 2: 1 + 1 = 1 1 = 0; 1 + 0 = 1 0 = 1; 0 + 1 = 0 1 
= 1.

Figure 4.4 shows an example of polynomial arithmetic over GF(2). For f(x) = (x7 + x5 + x4 
+ x3 +x + 1) and g(x) = (x3 + x + 1), the figure shows f(x) + g(x); f(x) g(x); f(x) x g(x); 
and f(x)/g(x). Note that g(x)|f(x)

Figure 4.4. Examples of Polynomial Arithmetic over GF(2)

file:///D|/1/0131873164/ch04lev1sec5.html (5 von 9) [14.10.2007 09:40:22]



Section 4.5.  Polynomial Arithmetic

 

file:///D|/1/0131873164/ch04lev1sec5.html (6 von 9) [14.10.2007 09:40:22]



Section 4.5.  Polynomial Arithmetic

 

[Page 117]

A polynomial f(x) over a field F is called irreducible if and only if f(x) cannot be expressed as a product 
of two polynomials, both over F, and both of degree lower than that of f(x). By analogy to integers, an 
irreducible polynomial is also called a prime polynomial.

The polynomial
[6]

 f(x) = x4 + 1 over GF(2) is reducible, because x4 + 1 = (x + 1)(x3 + x2 
+ x + 1)

 
[6] In the remainder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).

Consider the polynomial f(x) = x3 + x + 1. It is clear by inspection that x is not a factor of f
(x). We easily show that x + 1 is not a factor of f(x):

 
Thus f(x) has no factors of degree 1. But it is clear by inspection that if f(x) is reducible, it 
must have one factor of degree 2 and one factor of degree 1. Therefore, f(x) is irreducible.

 
Finding the Greatest Common Divisor

We can extend the analogy between polynomial arithmetic over a field and integer arithmetic by 
defining the greatest common divisor as follows. The polynomial c(x) is said to be the greatest common 
divisor of a(x) and b(x) if

1.  

c(x) divides both a(x) and b(x);

2.  

any divisor of a(x) and b(x) is a divisor of c(x).
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An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial of maximum degree that 
divides both a(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common divisor of two polynomials. The 
equality in Equation (4.4) can be rewritten as the following theorem:

Equation 4-7 
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The Euclidean algorithm for polynomials can be stated as follows. The algorithm assumes that the 
degree of a(x) is greater than the degree of b(x). Then, to find gcd[a(x), b(x)],

EUCLID[a(x), b(x)]
1. A(x)  a(x); B(x)  b(x)
2. if B(x) = 0 return A(x) = gcd[a(x), b(x)]
3. R(x) = A(x) mod B(x)
4. A(x)  B(x)
5. B(x)  R(x)
6. goto 2

 
Find gcd[a(x), b(x)] for a(x) = x6 + x5 +x4 + x3 + x2 +x + 1 and b(x) = x4 + x2 + x + 1.

A(x) = a(x); B(x) = b(x)

 
R(x) = A(x) mod B(x) = x3 + x2 + 1

A(x) = x4 + x2 + x + 1; B(x) = x3 + x2 + 1
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R(x) = A(x) mod B(x) = 0

gcd[a(x), b(x)] = A(x) = x3 + x2 + 1

 
Summary

We began this section with a discussion of arithmetic with ordinary polynomials. In ordinary polynomial 
arithmetic, the variable is not evaluated; that is, we do not plug a value in for the variable of the 
polynomials. Instead, arithmetic operations are performed on polynomials (addition, subtraction, 
multiplication, division) using the ordinary rules of algebra. Polynomial division is not allowed unless the 
coefficients are elements of a field.

[Page 119]

Next, we discussed polynomial arithmetic in which the coefficients are elements of GF(p). In this case, 
polynomial addition, subtraction, multiplication, and division are allowed. However, division is not exact; 
that is, in general division results in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the greatest common divisor of 
two polynomials whose coefficients are elements of a field.

All of the material in this section provides a foundation for the following section, in which polynomials 

are used to define finite fields of order pn.
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4.6. Finite Fields Of the Form GF(2n)

Earlier in this chapter, we mentioned that the order of a finite field must be of the form pn where p is a 
prime and n is a positive integer. In Section 4.4, we looked at the special case of finite fields with order 
p. We found that, using modular arithmetic in Z

p
, all of the axioms for a field (Figure 4.1) are satisfied. 

For polynomials over pn, with n > 1, operations modulo pn do not produce a field. In this section, we 

show what structure satisfies the axioms for a field in a set with pn elements, and concentrate on GF(2n).

Motivation

Virtually all encryption algorithms, both symmetric and public key, involve arithmetic operations on 
integers. If one of the operations that is used in the algorithm is division, then we need to work in 
arithmetic defined over a field. For convenience and for implementation efficiency, we would also like to 
work with integers that fit exactly into a given number of bits, with no wasted bit patterns. That is, we 

wish to work with integers in the range 0 through 2n 1, which fit into an n-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on data 8 bits 
at a time and we wish to perform division. With 8 bits, we can represent integers in the 
range 0 through 255. However, 256 is not a prime number, so that if arithmetic is 
performed in Z256 (arithmetic modulo 256), this set of integers will not be a field. The 

closest prime number less than 256 is 251. Thus, the set Z251, using arithmetic modulo 

251, is a field. However, in this case the 8-bit patterns representing the integers 251 
through 255 would not be used, resulting in inefficient use of storage.

 
As the preceding example points out, if all arithmetic operations are to be used, and we wish to 
represent a full range of integers in n bits, then arithmetic modulo will not work; equivalently, the set of 

integers modulo 2n, for n > 1, is not a field. Furthermore, even if the encryption algorithm uses only 
addition and multiplication, but not division, the use of the set Z2n is questionable, as the following 

example illustrates.

[Page 120]
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Suppose we wish to use 3-bit blocks in our encryption algorithm, and use only the 
operations of addition and multiplication. Then arithmetic modulo 8 is well defined, as 
shown in Table 4.1. However, note that in the multiplication table, the nonzero integers do 
not appear an equal number of times. For example, there are only four occurrences of 3, 
but twelve occurrences of 4. On the other hand, as was mentioned, there are finite fields of 

the form GF(2n) so there is in particular a finite field of order 23 = 8. Arithmetic for this 
field is shown in Table 4.5. In this case, the number of occurrences of the nonzero integers 
is uniform for multiplication. To summarize,

 Integer 1 2 3 4 5 6 7

 Occurrences in Z8 4 8 4 12 4 8 4

 Occurrences in GF(23) 7 7 7 7 7 7 7

 
Table 4.5. Arithmetic in GF(23)

(This item is displayed on page 121 in the print version) 

[View full size image]
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For the moment, let us set aside the question of how the matrices of Table 4.5 were 
constructed and instead make some observations.

1.  

The addition and multiplication tables are symmetric about the main diagonal, in 
conformance to the commutative property of addition and multiplication. This 
property is also exhibited in Table 4.1, which uses mod 8 arithmetic.

2.  

All the nonzero elements defined by Table 4.5 have a multiplicative inverse, unlike 
the case with Table 4.1.

3.  

The scheme defined by Table 4.5 satisfies all the requirements for a finite field. 
Thus, we can refer to this scheme as GF(23).

4.  

For convenience, we show the 3-bit assignment used for each of the elements of GF
(23).

 
Intuitively, it would seem that an algorithm that maps the integers unevenly onto themselves might be 
cryptographically weaker than one that provides a uniform mapping. Thus, the finite fields of the form GF

(2n) are attractive for cryptographic algorithms.

To summarize, we are looking for a set consisting of 2n elements, together with a definition of addition 
and multiplication over the set that define a field. We can assign a unique integer in the range 0 through 

2n 1 to each element of the set. Keep in mind that we will not use modular arithmetic, as we have seen 
that this does not result in a field. Instead, we will show how polynomial arithmetic provides a means for 
constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n 1 or less over the field Z
p
. Thus, each polynomial has 

the form

 

file:///D|/1/0131873164/ch04lev1sec6.html (3 von 13) [14.10.2007 09:40:24]



Section 4.6.  Finite Fields Of the Form GF(2n)

where each a
i
 takes on a value in the set {0, 1,..., p 1}. There are a total of pn different polynomials in 

S.

[Page 121]

For p = 3 and n = 2, the 32 = 9 polynomials in the set are

0 x 2x

1 x + 1 2x + 1

2 x + 2 2x + 2

For p = 2 and n = 3, the 23 = 8 the polynomials in the set are

0 x + 1 x2 + x

1 x2 x2 + x + 1

x x2 + 1  

 
With the appropriate definition of arithmetic operations, each such set S is a finite field. The definition 
consists of the following elements:

1.  

Arithmetic follows the ordinary rules of polynomial arithmetic using the basic rules of algebra, 
with the following two refinements.

2.  

Arithmetic on the coefficients is performed modulo p. That is, we use the rules of arithmetic for 
the finite field Z

p
.

[Page 122]
3.  

If multiplication results in a polynomial of degree greater than n 1, then the polynomial is 
reduced modulo some irreducible polynomial m(x) of degree n. That is, we divide by m(x) and 
keep the remainder. For a polynomial f(x), the remainder is expressed as r(x) = f(x) mod m(x).
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The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(28), with the 
irreducible polynomial m(x) = x8 + x4 x3 + x + 1. Consider the two polynomials f(x) = x6 
+ x4 + x2 + x + 1 and g(x) = x7 + x + 1. Then

f(x) + g(x) = x6 + x4 x2 + x + 1 + x7 + x + 1

f(x) x g(x) = x13 + x11 + x9 + x8 + x7 +

x7 + x5 + x3 + x2 + x +

x6 + x4 + x2 + x + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

 
Therefore, f(x) x g(x) mod m(x) = x7 + x6 + 1.

 
As with ordinary modular arithmetic, we have the notion of a set of residues in modular polynomial 

arithmetic. The set of residues modulo m(x), an nth-degree polynomial, consists of pn elements. Each of 

these elements is represented by one of the pn polynomials of degree m < n.

The residue class [x + 1], modulo m(x), consists of all polynomials a(x) such that a(x)  (x 
+ 1) (mod m(x)). Equivalently, the residue class [x + 1] consists of all polynomials a(x) 
that satisfy the equality a(x) mod m(x) = x + 1.

 
It can be shown that the set of all polynomials modulo an irreducible nth-degree polynomial m(x) 
satisfies the axioms in Figure 4.1, and thus forms a finite field. Furthermore, all finite fields of a given 
order are isomorphic; that is, any two finite-field structures of a given order have the same structure, 
but the representation, or labels, of the elements may be different.

[Page 123]
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To construct the finite field GF(23), we need to choose an irreducible polynomial of degree 
3. There are only two such polynomials: (x3 + x2 + 1) and (x3 + x + 1). Using the latter, 
Table 4.6 shows the addition and multiplication tables for GF(23). Note that this set of 
tables has the identical structure to those of Table 4.5. Thus, we have succeeded in finding 
a way to define a field of order 23.

Table 4.6. Polynomial Arithmetic Modulo (x3 + x + 1)

(This item is displayed on page 124 in the print version) 

[View full size image]

 

 
Finding the Multiplicative Inverse

Just as the Euclidean algorithm can be adapted to find the greatest common divisor of two polynomials, 
the extended Euclidean algorithm can be adapted to find the multiplicative inverse of a polynomial. 
Specifically, the algorithm will find the multiplicative inverse of b(x) modulo m(x) if the degree of b(x) is 
less than the degree of m(x) and gcd[m(x), b(x)] = 1. If m(x) is an irreducible polynomial, then it has 
no factor other than itself or 1, so that gcd[m(x), b(x)] = 1. The algorithm is as follows:

EXTENDED EUCLID[m(x), b(x)]
1. [A1(x), A2(x), A3(x)]  [1, 0, m(x)]; [B1(x), B2(x),
   B3(x)]  [0, 1, b(x)]
2. if B3(x) = 0   return  A3(x) = gcd[m(x), b(x)]; no
   inverse
3. if B3(x) = 1   return  B3(x) = gcd[m(x), b(x)];
   B2(x) = b(x)1 mod m(x)
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4. Q(x) = quotient of A3(x)/B3(x)
5. [T1(x), T2(x), T3(x)]  [A1(x)  Q(x)B1(x), A2(x) 
   Q(x)B2(x), A3(x)  QB3(x)]
6. [A1(x), A2(x), A3(x)]  [B1(x), B2(x), B3(x)]
7. [B1(x), B2(x), B3(x)]  [T1(x), T2(x), T3(x)]
8. goto 2

 
Table 4.7 shows the calculation of the multiplicative inverse of (x7 + x + 1) mod (x8 + x4 + 

x3 + x + 1). The result is that (x7 + x + 1)1 = (x7). That is, (x7 + x + 1)(x7)  1 (mod 
(x8 + x4 + x3 + x + 1)).

Table 4.7. Extended Euclid [(x8 + x4 + x3 + x + 1), (x7 
+ x + 1)]

(This item is displayed on page 125 in the print version) 

Initialization A1(x) = 1; A2(x) = 0; A3(x) = x8 + x4 + x3 + x + 1  
B1(x) = 0; B2(x) = 1; B3(x) = x7 + x + 1

Iteration 1 Q(x) = x  
A1(x) = 0; A2(x) = 1; A3(x) = x7 + x + 1  
B1(x) = 1; B2(x) = x; B3(x) = x4 + x3 + x2 + 1

Iteration 2 Q(x) = x3 + x2 + 1  
A1(x) = 1; A2(x) = x; A3(x) = x4 + x3 + x2 + 1  
B1(x) = x3 + x2 + 1; B2(x) = x4 + x3 + x + 1; B3(x) = x

Iteration 3 Q(x) = x3 + x2 + x  
A1(x) = x3 + x2 + 1; A2(x) = x4 + x3 + x + 1; A3(x) = 
x  
B1(x) = x6 + x2 + x + 1; B2(x) = x7; B3(x) = 1

Iteration 4 B3(x) = gcd[(x7 + x + 1), (x8 + x4 + x3 + x + 1)] = 1  
B2(x) = (x7 + x + 1)1 mod (x8 + x4 + x3 + x + 1) = x7

 

 
Computational Considerations

A polynomial f(x) in GF(2n)
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can be uniquely represented by its n binary coefficients (a
n1an2...a0). Thus, every polynomial in GF(2n) 

can be represented by an n-bit number.

[Page 125]

Tables 4.5 and 4.6 show the addition and multiplication tables for GF(23) modulo m(x) = 
(x3 + x + 1). Table 4.5 uses the binary representation, and Table 4.6 uses the polynomial 
representation.

 
Addition

We have seen that addition of polynomials is performed by adding corresponding coefficients, and, in 
the case of polynomials over Z2 addition is just the XOR operation. So, addition of two polynomials in GF

(2n) corresponds to a bitwise XOR operation.

Consider the two polynomials in GF(28) from our earlier example: f(x) = x6 + x4 + x2 + x 
+ 1 and g(x) = x7 + x + 1.

(x6 + x4 + x2 + x + 1) + (x7+ x + 
1)

= x7 + x6 + x6 + x4 + x2 (polynomial notation)

(01010111)  (10000011)
= (11010100) (binary notation)

{57}  {83}
= {D4}

(hexadecimal notation)
[7]

 
[7] A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer 
Science Student Resource Site at WilliamStallings.com/StudentSupport.html. Here each of 
two groups of 4 bits in a byte is denoted by a single hexadecimal character, the two characters enclosed in 
brackets.

 
Multiplication

There is no simple XOR operation that will accomplish multiplication in GF(2n) However, a reasonably 
straightforward, easily implemented technique is available. We will discuss the technique with reference 
to GF(28) using m(x) = x8 + x4 + x3 + x + 1, which is the finite field used in AES. The technique readily 

generalizes to GF(2n).

The technique is based on the observation that

Equation 4-8 
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A moment's thought should convince you that Equation (4.8) is true; if not, divide it out. In general, in 

GF(2n) with an nth-degree polynomial p(x), we have xn mod p(x) = [p(x) xn].

Now, consider a polynomial in GF(28), which has the form f(x) = b7x7 + b6x6 + b5x5 + b4x4 + b3x3 + 

b2x2 + b1x + b0. If we multiply by x, we have

Equation 4-9 

 
If b7 = 0, then the result is a polynomial of degree less than 8, which is already in reduced form, and no 

further computation is necessary. If b7 = 1, then reduction modulo m(x) is achieved using Equation 

(4.8):

x x f(x) = (b6x7 + b5x6 + b4x5 + b3x4 + b2x3 +

b1x2 + b0x) + (x4 + x3 + x + 1)

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit left shift followed by a 
conditional bitwise XOR with (00011011), which represents (x4 + x3 + x + 1). To summarize,

Equation 4-10 

 
Multiplication by a higher power of x can be achieved by repeated application of Equation (4.10). By 
adding intermediate results, multiplication by any constant in GF(28) can be achieved.
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In an earlier example, we showed that for f(x) = x6 + x4 + x2 + x + 1, g(x) = x7 + x + 1, 
and m(x) = x8 + x4 + x3 + x + 1, f(x) x g(x) mod m(x) = x7 + x6 + 1. Redoing this in 
binary arithmetic, we need to compute (01010111) x (10000011). First, we determine the 
results of multiplication by powers of x:

(01010111) x (00000001) = (10101110)

(01010111) x (00000100) = (01011100)  (00011011) = (01000111)

(01010111) x (00001000) = (10001110)

(01010111) x (00010000) = (00011100)  (00011011) = (00000111)

(01010111) x (00100000) = (00001110)

(01010111) x (01000000) = (00011100)

(01010111) x (10000000) = (00111000)

So,

(01010111) x (10000011) = (01010111) x [(00000001) x (00000010) x (10000000)]

= (01010111)  (10101110)  (00111000) = (11000001)

which is equivalent to x7 + x6 + 1.

 

[Page 127]

Using a Generator

An equivalent technique for defining a finite field of the form GF(2n) using the same irreducible 
polynomial, is sometimes more convenient. To begin, we need two definitions: A generator g of a finite 
field F of order q (contains q elements) is an element whose first q 1 powers generate all the nonzero 

elements of F. That is, the elements of F consist of 0, g0, g1,..., gq2. Consider a field F defined by a 
polynomial f(x). An element b contained in F is called a root of the polynomial if f(b) = 0. Finally, it can 
be shown that a root g of an irreducible polynomial is a generator of the finite field defined on that 
polynomial.
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Let us consider the finite field GF(23), defined over the irreducible polynomial x3 + x + 1, 
discussed previously. Thus, the generator g must satisfy f(x) = g3 + g + 1 = 0. Keep in 
mind, as discussed previously, that we need not find a numerical solution to this equality. 
Rather, we deal with polynomial arithmetic in which arithmetic on the coefficients is 
performed modulo 2. Therefore, the solution to the preceding equality is g3 = g 1 = g + 1. 
We now show that g in fact generates all of the polynomials of degree less than 3. We have 
the following:

g4 = g(g3) = g(g + 1) = g2 + g

g5 = g(g4) = g(g2 + g) = g3 + g2 = g2 + g + 1

g6 = g(g5) = g(g2 + g + 1) = g3 + g2 + g = g2 + g + g + 1 = g2 + 1

g7 = g(g6) = g(g2 + 1) = g3 + g = g + g + 1 = 1 = g0

We see that the powers of g generate all the nonzero polynomials in GF(23). Also, it should 

be clear that gk = gk mod 7 for any integer k. Table 4.8 shows the power representation, as 
well as the polynomial and binary representations.

Table 4.8. Generator for GF(23) using x3 + x + 1

Power 
Representation

Polynomial 
Representation

Binary 
Representation

Decimal (Hex) 
Representation

0 0 000 0

g0 ( = g7) 1 001 1

g1 g 010 2

g2 g2 100 4

g3 g + 1 011 3

g4 g2 + g 110 6

g5 g2 + g + 1 111 7

g6 g2 + 1 101 5

 
This power representation makes multiplication easy. To multiply in the power notation, 
add exponents modulo 7. For example, g4 x g6 = g(10 mod 7) = g3 = g + 1. The same result 
is achieved using polynomial arithmetic, as follows: we have g4 = g2 + g and g6 = g2 + 1. 
Then, (g2 + g) x (g2 + 1) = g4 + g3 + g2 + 1. Next, we need to determine (g4 + g3 + g2 + 
1) mod (g3 + g + 1) by division:

[Page 129]
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We get a result of g + 1, which agrees with the result obtained using the power 
representation.

Table 4.9 shows the addition and multiplication tables for GF(23) using the power 
represenation. Note that this yields the identical results to the polynomial representation 
(Table 4.6) with some of the rows and columns interchanged.

Table 4.9. GF(23) Arithmetic Using Generator for the Polynomial (x3 
+ x + 1)

(This item is displayed on page 128 in the print version) 

[View full size image]

 

 
In general, for GF(2n) with irreducible polynomial f(x), determine gn = f(x) gn. Then calculate all of the 
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powers of g from gn+1 through g2n2. The elements of the field correspond to the powers of g from 

through g2n2, plus the value 0. For multiplication of two elements in the field, use the equality gk = gk 

mod (2n1) for any integer k.

Summary

In this section, we have shown how to construct a finite field of order 2n. Specifically, we defined GF(2n) 
with the following properties:

1.  

GF(2n) consists of 2n elements.

2.  

The binary operations + and x are defined over the set. The operations of addition, subtraction, 
multiplication, and division can be performed without leaving the set. Each element of the set 
other than 0 has a multiplicative inverse.

We have shown that the elements of GF(2n) can be defined as the set of all polynomials of degree n 1 or 
less with binary coefficients. Each such polynomial can be represented by a unique n-bit value. 
Arithmetic is defined as polynomial arithmetic modulo some irreducible polynomial of degree n. We have 

also seen that an equivalent definition of a finite field GF(2n) makes use of a generator and that 
arithmetic is defined using powers of the generator.
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[Page 129 (continued)]

4.7. Recommended Reading and Web Sites

[HERS75], still in print, is the classic treatment of abstract algebra; it is readable and rigorous; 
[DESK92] is another good resource. [KNUT98] provides good coverage of polynomial arithmetic.

[Page 130]

One of the best treatments of the topics of this chapter is [BERL84], still in print. [GARR01] also has 
extensive coverage. A thorough and rigorous treatment of finite fields is [LIDL94]. [HORO71] is a good 
overview of the topics of this chapter.

BERL84 Berlekamp, E. Algebraic Coding Theory. Laguna Hills, CA: Aegean Park Press, 
1984.

DESK92 Deskins, W. Abstract Algebra. New York: Dover, 1992.

GARR01 Garrett, P. Making, Breaking Codes: An Introduction to Cryptology. Upper 
Saddle River, NJ: Prentice Hall, 2001.

HERS75 Herstein, I. Topics in Algebra. New York: Wiley, 1975.

HORO71 Horowitz, E. "Modular Arithmetic and Finite Field Theory: A Tutorial." 
Proceedings of the Second ACM Symposium and Symbolic and Algebraic Manipulation, 
March 1971.

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical 
Algorithms. Reading, MA: Addison-Wesley, 1998.

LIDL94 Lidl, R., and Niederreiter, H. Introduction to Finite Fields and Their 
Applications. Cambridge: Cambridge University Press, 1994.

 
Recommended Web Sites

●     PascGalois Project: Contains a clever set of examples and projects to aid in giving students a 
visual understanding of key concepts in abstract algebra
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[Page 130 (continued)]

4.8. Key Terms, Review Questions, and Problems

Key Terms

abelian group

associative

coefficient set

commutative

commutative ring

cyclic group

divisor

Euclidean algorithm

field

finite group

finite ring

finite field

generator

greatest common divisor

group

identity element

infinite group

infinite ring

infinite field
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integral domain

inverse element

irreducible polynomial

modular arithmetic

modular polynomial arithmetic

modulo operator

modulus

monic polynomial

order

polynomial

polynomial arithmetic

polynomial ring

prime number

prime polynomial

relatively prime

residue

ring

[Page 131]

Review Questions

4.1. Briefly define a group.

4.2. Briefly define a ring.
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4.3. Briefly define a field.

4.4. What does it mean to say that b is a divisor of a?

4.5. What is the difference between modular arithmetic and ordinary arithmetic?

4.6. List three classes of polynomial arithmetic.

Problems

4.1 For the group S
n
 of all permutations of n distinct symbols,

a.  

What is the number of elements in S
n
?

b.  

Show that S
n
 is not abelian for n > 2.

4.2 Does the set of residue classes modulo 3 form a group

a.  

with respect to addition?

b.  

with respect to multiplication?
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4.3 Consider the set S = {a, b} with addition and multiplication defined by the tables:

 
Is S a ring? Justify your answer.

4.4 Reformulate Equation (4.1), removing the restriction that a is a nonnegative integer. 
That is, let a be any integer.

4.5 Draw a figure similar to Figure 4.2 for a < 0.

4.6 Find integers x such that

a.  

5x  4 (mod 3)

b.  

7x  6 (mod 5)

c.  

9x  8 (mod 7)

4.7 In this text we assume that the modulus is a positive integer. But the definition of the 
expression a mod n also makes perfect sense if n is negative. Determine the following:

a.  

5 mod 3

b.  

5 mod 3

c.  

5 mod 3
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d.  

5 mod 3

4.8 A modulus of 0 does not fit the definition, but is defined by convention as follows: a 
mod 0 = a. With this definition in mind, what does the following expression mean: a 

 b (mod 0)?

4.9 In Section 4.2, we define the congruence relationship as follows: Two integers a and b 
are said to be congruent modulo n, if (a mod n) = (b mod n). We then proved that a 

 b (mod n) if n|(a b). Some texts on number theory use this latter relationship as 
the definition of congruence: Two integers a and b are said to be congruent modulo n, 
if n|(a b). Using this latter definition as the starting point, prove that if (a mod n) = (b 
mod n), then n divides (a b).

4.10
What is the smallest positive integer that has exactly k divisors, for 1  k  6?

4.11 Prove the following:

a.  

a  b (mod n) implies b  a (mod n)

b.  

a  b (mod n) and b  c (mod n) imply a  c (mod n)

4.12 Prove the following:

a.  

[(a mod n) (b mod n)] mod n = (a b) mod n

b.  

[(a mod n) x (b mod n)] mod n = (a x b) mod n

[Page 132]
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4.13 Find the multiplicative inverse of each nonzero element in Z5.

4.14 Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For 
example, 475  4 + 7 + 5  16  1 + 6  7 (mod 9). This is the basis for the 
familiar procedure of "casting out 9's" when checking computations in arithmetic.

4.15 a.  
Determine gcd(24140, 16762).

b.  

Determine gcd(4655, 12075).

4.16 The purpose of this problem is to set an upper bound on the number of iterations of 
the Euclidean algorithm.

a.  

Suppose that m = qn + r with q > 0 and 0  r < n. Show that m/2 > r.

b.  

Let A
t
 be the value of A in the Euclidean algorithm after the ith iteration. Show 

that

 
c.  

Show that if m, n, and N are integers with 1  m, n,  2N, then the 
Euclidean algorithm takes at most 2N steps to find gcd(m, n).
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4.17 The Euclidean algorithm has been known for over 2000 years and has always been a 
favorite among number theorists. After these many years, there is now a potential 
competitor, invented by J. Stein in 1961. Stein's algorithms is as follows. Determine 

gcd(A, B) with A, B  1.

STEP 1 Set A1 = A, B1 = B, C1 = 1

STEP n 1.  
If A

n
 = B

n
 stop. gcd(A, B) = A

n
C

n

2.  

If A
n
 and B

n
 are both even, set A

n+1 = A
n
/2, B

n+1 = B
n
/2, C

n+1 = 

2C
n

3.  

If A
n
 is even and B

n
 is odd, set A

n+1 = A
n
/2, B

n+1 = B
n
, C

n+1 = C
n

4.  

If A
n
 is odd and B

n
 is even, set A

n+1 = A
n
, B

n+1 = B
n
/2, C

n+1 = C
n

5.  

If A
n
 and B

n
 are both odd, set A

n+1 = |A
n
 B

n
|, B

n + 1 = min(B
n
, A

n
), 

C
n+1 = C

n

 
Continue to step n + 1.

a.  

To get a feel for the two algorithms, compute gcd(2152, 764) using both the 
Euclidean and Stein's algorithm.

b.  

What is the apparent advantage of Stein's algorithm over the Euclidean 
algorithm?
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4.18 a.  
Show that if Stein's algorithm does not stop before the nth step, then

C
n+1 x gcd(A

n+1, Bn+1) = C
n
 x gcd(A

n
, B

n
)

b.  

Show that if the algorithm does not stop before step (n 1), then

 
c.  

Show that if 1  A, B  2N, then Stein's algorithm takes at most 4N steps to 
find gcd(m, n). Thus, Stein's algorithm works in roughly the same number of 
steps as the Euclidean algorithm.

d.  

Demonstrate that Stein's algorithm does indeed return gcd(A, B).

4.19 Using the extended Euclidean algorithm, find the multiplicative inverse of

a.  

1234 mod 4321

b.  

24140 mod 40902

c.  

550 mod 1769

4.20 Develop a set of tables similar to Table 4.3 for GF(5).

4.21 Demonstrate that the set of polynomials whose coefficients form a field is a ring.
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4.22 Demonstrate whether each of these statements is true or false for polynomials over a 
field:

a.  

The product of monic polynomials is monic.

b.  

The product of polynomials of degrees m and n has degree m + n

c.  

The sum of polynomials of degrees m and n has degree max[m, n].

[Page 133]

4.23 For polynomial arithmetic with coefficients in Z10, perform the following calculations:

a.  

(7x + 2) (x2 + 5)

b.  

(6x2 + x + 3) x (5x2 + 2)

4.24 Determine which of the following are reducible over GF(2):

a.  

x3 + 1

b.  

x3 + x2 + 1

c.  

x4 + 1 (be careful)
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4.25 Determine the gcd of the following pairs of polynomials:

a.  

x3 + x + 1 and x2 + x + 1 over GF(2)

b.  

x3 x + 1 and x2 + 1 over GF(3)

c.  

x5 + x4 + x3 x2 x + 1 and x3 + x2 + x + 1 over GF(3)

d.  

x5 + 88x4 + 73x3 + 83x2 + 51x + 67 and x3 + 97x2 + 40x + 38 over GF(101)

4.26 Develop a set of tables similar to Table 4.6 for GF(4) with m(x) = x4 + x + 1.

4.27 Determine the multiplicative inverse of x3 + x + 1 in GF(24), with m(x) = x4 + x + 1.

4.28 Develop a table similar to Table 4.8 for GF(24) with m(x) = x4 + x + 1.

Programming Problems

4.29 Write a simple four-function calculator in GF(24). You may use table lookups for the 
multiplicative inverses.

4.30 Write a simple four-function calculator in GF(28). You should compute the 
multiplicative inverses on the fly.
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Key Expansion
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"It seems very simple."

"It is very simple. But if you don't know what the key is it's virtually indecipherable."

Talking to Strange Men, Ruth Rendell

Key Points

●     AES is a block cipher intended to replace DES for commercial applications. It uses a 
128-bit block size and a key size of 128, 192, or 256 bits.

●     AES does not use a Feistel structure. Instead, each full round consists of four 
separate functions: byte substitution, permutation, arithmetic operations over a 
finite field, and XOR with a key.

 
The Advanced Encryption Standard (AES) was published by NIST (National Institute of Standards and 
Technology) in 2001. AES is a symmetric block cipher that is intended to replace DES as the approved 
standard for a wide range of applications. In this chapter, we first look at the evaluation criteria used by 
NIST to select a candidate for AES and then examine the cipher itself.
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Compared to public-key ciphers such as RSA, the structure of AES, and most symmetric ciphers, is very 
complex and cannot be explained as easily as RSA and similar algorithms. Accordingly, the reader may 
with to begin with a simplified version of AES, which is described in Appendix 5B. This version allows the 
reader to perform encryption and decryption by hand and gain a good understanding of the working of 
the algorithm details. Classroom experience indicates that a study of this simplified version enhances 

understanding of AES.
[1]

[1] However, you may safely skip Appendix 5B, at least on a first reading. If you get lost or bogged down in the details of AES, 
then you can go back and start with simplified AES.
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5.1. Evaluation Criteria For AES

The Origins of AES

We mentioned in Chapter 3 that in 1999, NIST issued a new version of its DES standard (FIPS PUB 46-
3) that indicated that DES should only be used for legacy systems and that triple DES (3DES) be used. 
We describe 3DES in Chapter 6. 3DES has two attractions that assure its widespread use over the next 
few years. First, with its 168-bit key length, it overcomes the vulnerability to brute-force attack of DES. 
Second, the underlying encryption algorithm in 3DES is the same as in DES. This algorithm has been 
subjected to more scrutiny than any other encryption algorithm over a longer period of time, and no 
effective cryptanalytic attack based on the algorithm rather than brute force has been found. 
Accordingly, there is a high level of confidence that 3DES is very resistant to cryptanalysis. If security 
were the only consideration, then 3DES would be an appropriate choice for a standardized encryption 
algorithm for decades to come.

[Page 136]

The principal drawback of 3DES is that the algorithm is relatively sluggish in software. The original DES 
was designed for mid-1970s hardware implementation and does not produce efficient software code. 
3DES, which has three times as many rounds as DES, is correspondingly slower. A secondary drawback 
is that both DES and 3DES use a 64-bit block size. For reasons of both efficiency and security, a larger 
block size is desirable.

Because of these drawbacks, 3DES is not a reasonable candidate for long-term use. As a replacement, 
NIST in 1997 issued a call for proposals for a new Advanced Encryption Standard (AES), which should 
have a security strength equal to or better than 3DES and significantly improved efficiency. In addition 
to these general requirements, NIST specified that AES must be a symmetric block cipher with a block 
length of 128 bits and support for key lengths of 128, 192, and 256 bits.

In a first round of evaluation, 15 proposed algorithms were accepted. A second round narrowed the field 
to 5 algorithms. NIST completed its evaluation process and published a final standard (FIPS PUB 197) in 
November of 2001. NIST selected Rijndael as the proposed AES algorithm. The two researchers who 
developed and submitted Rijndael for the AES are both cryptographers from Belgium: Dr. Joan Daemen 
and Dr. Vincent Rijmen.

Ultimately, AES is intended to replace 3DES, but this process will take a number of years. NIST 
anticipates that 3DES will remain an approved algorithm (for U.S. government use) for the foreseeable 
future.

AES Evaluation

It is worth examining the criteria used by NIST to evaluate potential candidates. These criteria span the 
range of concerns for the practical application of modern symmetric block ciphers. In fact, two set of 
criteria evolved. When NIST issued its original request for candidate algorithm nominations in 1997 
[NIST97], the request stated that candidate algorithms would be compared based on the factors shown 
in Table 5.1 (ranked in descending order of relative importance). The three categories of criteria were as 
follows:
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●     Security: This refers to the effort required to cryptanalyze an algorithm. The emphasis in the 
evaluation was on the practicality of the attack. Because the minimum key size for AES is 128 
bits, brute-force attacks with current and projected technology were considered impractical. 
Therefore, the emphasis, with respect to this point, is cryptanalysis other than a brute-force 
attack.

●     Cost: NIST intends AES to be practical in a wide range of applications. Accordingly, AES must 
have high computational efficiency, so as to be usable in high-speed applications, such as 
broadband links.

[Page 137]
●     Algorithm and implementation characteristics: This category includes a variety of 

considerations, including flexibility; suitability for a variety of hardware and software 
implementations; and simplicity, which will make an analysis of security more straightforward.

Table 5.1. NIST Evaluation Criteria for AES (September 12, 1997)

SECURITY

●     Actual security: compared to other submitted algorithms (at the same key and block size).
●     Randomness: the extent to which the algorithm output is indistinguishable from a random 

permutation on the input block.
●     Soundness: of the mathematical basis for the algorithm's security.
●     Other security factors: raised by the public during the evaluation process, including any 

attacks which demonstrate that the actual security of the algorithm is less than the strength 
claimed by the submitter.

COST

●     Licensing requirements: NIST intends that when the AES is issued, the algorithm(s) 
specified in the AES shall be available on a worldwide, non-exclusive, royalty-free basis.

●     Computational efficiency: The evaluation of computational efficiency will be applicable to 
both hardware and software implementations. Round 1 analysis by NIST will focus primarily on 
software implementations and specifically on one key-block size combination (128-128); more 
attention will be paid to hardware implementations and other supported key-block size 
combinations during Round 2 analysis. Computational efficiency essentially refers to the speed 
of the algorithm. Public comments on each algorithm's efficiency (particularly for various 
platforms and applications) will also be taken into consideration by NIST.

●     Memory requirements: The memory required to implement a candidate algorithmfor both 
hardware and software implementations of the algorithmwill also be considered during the 
evaluation process. Round 1 analysis by NIST will focus primarily on software 
implementations; more attention will be paid to hardware implementations during Round 2. 
Memory requirements will include such factors as gate counts for hardware implementations, 
and code size and RAM requirements for software implementations.

ALGORITHM AND IMPLEMENTATION CHARACTERISTICS
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●     Flexibility: Candidate algorithms with greater flexibility will meet the needs of more users 
than less flexible ones, and therefore, inter alia, are preferable. However, some extremes of 
functionality are of little practical application (e.g., extremely short key lengths); for those 
cases, preference will not be given. Some examples of flexibility may include (but are not 
limited to) the following:

a.  

The algorithm can accommodate additional key- and block-sizes (e.g., 64-bit block 
sizes, key sizes other than those specified in the Minimum Acceptability Requirements 
section, [e.g., keys between 128 and 256 that are multiples of 32 bits, etc.])

b.  

The algorithm can be implemented securely and efficiently in a wide variety of 
platforms and applications (e.g., 8-bit processors, ATM networks, voice & satellite 
communications, HDTV, B-ISDN, etc.).

c.  

The algorithm can be implemented as a stream cipher, message authentication code 
(MAC) generator, pseudorandom number generator, hashing algorithm, etc.

●     Hardware and software suitability: A candidate algorithm shall not be restrictive in the 
sense that it can only be implemented in hardware. If one can also implement the algorithm 
efficiently in firmware, then this will be an advantage in the area of flexibility.

●     Simplicity: A candidate algorithm shall be judged according to relative simplicity of design.
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Using these criteria, the initial field of 21 candidate algorithms was reduced first to 15 candidates and 
then to 5 candidates. By the time that a final evaluation had been done the evaluation criteria, as 
described in [NECH00], had evolved. The following criteria were used in the final evaluation:

●     General security: To assess general security, NIST relied on the public security analysis 
conducted by the cryptographic community. During the course of the three-year evaluation 
process, a number of cryptographers published their analyses of the strengths and weaknesses 
of the various candidates. There was particular emphasis on analyzing the candidates with 
respect to known attacks, such as differential and linear cryptanalysis. However, compared to the 
analysis of DES, the amount of time and the number of cryptographers devoted to analyzing 
Rijndael are quite limited. Now that a single AES cipher has been chosen, we can expect to see a 
more extensive security analysis by the cryptographic community.

●     Software implementations: The principal concerns in this category are execution speed, 
performance across a variety of platforms, and variation of speed with key size.

●     Restricted-space environments: In some applications, such as smart cards, relatively small 
amounts of random-access memory (RAM) and/or read-only memory (ROM) are available for 
such purposes as code storage (generally in ROM); representation of data objects such as S-
boxes (which could be stored in ROM or RAM, depending on whether pre-computation or Boolean 
representation is used); and subkey storage (in RAM).

●     Hardware implementations: Like software, hardware implementations can be optimized for 
speed or for size. However, in the case of hardware, size translates much more directly into cost 
than is usually the case for software implementations. Doubling the size of an encryption 
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program may make little difference on a general-purpose computer with a large memory, but 
doubling the area used in a hardware device typically more than doubles the cost of the device.

●     Attacks on implementations: The criterion of general security, discussed in the first bullet, is 
concerned with cryptanalytic attacks that exploit mathematical properties of the algorithms. 
There is another class of attacks that use physical measurements conducted during algorithm 
execution to gather information about quantities such as keys. Such attacks exploit a 
combination of intrinsic algorithm characteristics and implementation-dependent features. 
Examples of such attacks are timing attacks and power analysis. Timing attacks are described in 
Chapter 3. The basic idea behind power analysis [KOCH98, BIHA00] is the observation that the 
power consumed by a smart card at any particular time during the cryptographic operation is 
related to the instruction being executed and to the data being processed. For example, 
multiplication consumes more power than addition, and writing 1s consumes more power than 
writing 0s.

●     Encryption versus decryption: This criterion deals with several issues related to 
considerations of both encryption and decryption. If the encryption and decryption algorithms 
differ, then extra space is needed for the decryption. Also, whether the two algorithms are the 
same or not, there may be timing differences between encryption and decryption.

[Page 139]

●     Key agility: Key agility refers to the ability to change keys quickly and with a minimum of 
resources. This includes both subkey computation and the ability to switch between different 
ongoing security associations when subkeys may already be available.

●     Other versatility and flexibility: [NECH00] indicates two areas that fall into this category. 
Parameter flexibility includes ease of support for other key and block sizes and ease of increasing 
the number of rounds in order to cope with newly discovered attacks. Implementation flexibility 
refers to the possibility of optimizing cipher elements for particular environments.

●     Potential for instruction-level parallelism: This criterion refers to the ability to exploit ILP 
features in current and future processors.

Table 5.2 shows the assessment that NIST provided for Rijndael based on these criteria.

Table 5.2. Final NIST Evaluation of Rijndael (October 2, 2000)

[Page 140]

General Security

Rijndael has no known security attacks. Rijndael uses S-boxes as nonlinear components. Rijndael 
appears to have an adequate security margin, but has received some criticism suggesting that its 
mathematical structure may lead to attacks. On the other hand, the simple structure may have 
facilitated its security analysis during the timeframe of the AES development process.

Software Implementations

Rijndael performs encryption and decryption very well across a variety of platforms, including 8-bit 
and 64-bit platforms, and DSPs. However, there is a decrease in performance with the higher key 
sizes because of the increased number of rounds that are performed. Rijndael's high inherent 
parallelism facilitates the efficient use of processor resources, resulting in very good software 
performance even when implemented in a mode not capable of interleaving. Rijndael's key setup time 
is fast.

Restricted-Space Environments
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In general, Rijndael is very well suited for restricted-space environments where either encryption or 
decryption is implemented (but not both). It has very low RAM and ROM requirements. A drawback is 
that ROM requirements will increase if both encryption and decryption are implemented 
simultaneously, although it appears to remain suitable for these environments. The key schedule for 
decryption is separate from encryption.

Hardware Implementations

Rijndael has the highest throughput of any of the finalists for feedback modes and second highest for 
non-feedback modes. For the 192 and 256-bit key sizes, throughput falls in standard and unrolled 
implementations because of the additional number of rounds. For fully pipelined implementations, the 
area requirement increases, but the throughput is unaffected.

Attacks on Implementations

The operations used by Rijndael are among the easiest to defend against power and timing attacks. 
The use of masking techniques to provide Rijndael with some defense against these attacks does not 
cause significant performance degradation relative to the other finalists, and its RAM requirement 
remains reasonable. Rijndael appears to gain a major speed advantage over its competitors when 
such protections are considered.

Encryption vs. Decryption

The encryption and decryption functions in Rijndael differ. One FPGA study reports that the 
implementation of both encryption and decryption takes about 60% more space than the 
implementation of encryption alone. Rijndael's speed does not vary significantly between encryption 
and decryption, although the key setup performance is slower for decryption than for encryption.

Key Agility

Rijndael supports on-the-fly subkey computation for encryption. Rijndael requires a one-time 
execution of the key schedule to generate all subkeys prior to the first decryption with a specific key. 
This places a slight resource burden on the key agility of Rijndael.

Other Versatility and Flexibility

Rijndael fully supports block sizes and key sizes of 128 bits, 192 bits and 256 bits, in any 
combination. In principle, the Rijndael structure can accommodate any block sizes and key sizes that 
are multiples of 32, as well as changes in the number of rounds that are specified.

Potential for Instruction-Level Parallelism

Rijndael has an excellent potential for parallelism for a single block encryption.
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5.2. The AES Cipher[2]

[2] Much of the material in this section originally appeared in [STAL02].

The Rijndael proposal for AES defined a cipher in which the block length and the key length can be 
independently specified to be 128, 192, or 256 bits. The AES specification uses the same three key size 
alternatives but limits the block length to 128 bits. A number of AES parameters depend on the key 
length (Table 5.3). In the description of this section, we assume a key length of 128 bits, which is likely 
to be the one most commonly implemented.

Table 5.3. AES Parameters

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14

Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

 
Rijndael was designed to have the following characteristics:

●     Resistance against all known attacks
●     Speed and code compactness on a wide range of platforms
●     Design simplicity

Figure 5.1 shows the overall structure of AES. The input to the encryption and decryption algorithms is a 
single 128-bit block. In FIPS PUB 197, this block is depicted as a square matrix of bytes. This block is 
copied into the State array, which is modified at each stage of encryption or decryption. After the final 
stage, State is copied to an output matrix. These operations are depicted in Figure 5.2a. Similarly, the 
128-bit key is depicted as a square matrix of bytes. This key is then expanded into an array of key 
schedule words; each word is four bytes and the total key schedule is 44 words for the 128-bit key 
(Figure 5.2b). Note that the ordering of bytes within a matrix is by column. So, for example, the first 
four bytes of a 128-bit plaintext input to the encryption cipher occupy the first column of the in matrix, 
the second four bytes occupy the second column, and so on. Similarly, the first four bytes of the 
expanded key, which form a word, occupy the first column of the w matrix.

[Page 141]

Figure 5.1. AES Encryption and Decryption

[View full size image]
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Figure 5.2. AES Data Structures

[View full size image]
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Before delving into details, we can make several comments about the overall AES structure:

1.  

One noteworthy feature of this structure is that it is not a Feistel structure. Recall that in the 
classic Feistel structure, half of the data block is used to modify the other half of the data block, 
and then the halves are swapped. Two of the AES finalists, including Rijndael, do not use a 
Feistel structure but process the entire data block in parallel during each round using 
substitutions and permutation.

2.  

The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i]. Four 
distinct words (128 bits) serve as a round key for each round; these are indicated in Figure 5.1.

3.  

Four different stages are used, one of permutation and three of substitution:

�❍     Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of the block
�❍     ShiftRows: A simple permutation
�❍     MixColumns: A substitution that makes use of arithmetic over GF(28)
�❍     AddRoundKey: A simple bitwise XOR of the current block with a portion of the expanded 

key
4.  

The structure is quite simple. For both encryption and decryption, the cipher begins with an 
AddRoundKey stage, followed by nine rounds that each includes all four stages, followed by a 
tenth round of three stages. Figure 5.3 depicts the structure of a full encryption round.

Figure 5.3. AES Encryption Round
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(This item is displayed on page 144 in the print version) 

[View full size image]

5.  

Only the AddRoundKey stage makes use of the key. For this reason, the cipher begins and ends 
with an AddRoundKey stage. Any other stage, applied at the beginning or end, is reversible 
without knowledge of the key and so would add no security.

6.  

The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself would not be 
formidable. The other three stages together provide confusion, diffusion, and nonlinearity, but by 
themselves would provide no security because they do not use the key. We can view the cipher 
as alternating operations of XOR encryption (AddRoundKey) of a block, followed by scrambling of 
the block (the other three stages), followed by XOR encryption, and so on. This scheme is both 
efficient and highly secure.

7.  

Each stage is easily reversible. For the Substitute Byte, ShiftRows, and MixColumns stages, an 
inverse function is used in the decryption algorithm. For the AddRoundKey stage, the inverse is 

achieved by XORing the same round key to the block, using the result that A  A  B = B.

8.  
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As with most block ciphers, the decryption algorithm makes use of the expanded key in reverse 
order. However, the decryption algorithm is not identical to the encryption algorithm. This is a 
consequence of the particular structure of AES.

9.  

Once it is established that all four stages are reversible, it is easy to verify that decryption does 
recover the plaintext. Figure 5.1 lays out encryption and decryption going in opposite vertical 
directions. At each horizontal point (e.g., the dashed line in the figure), State is the same for 
both encryption and decryption.
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10.  

The final round of both encryption and decryption consists of only three stages. Again, this is a 
consequence of the particular structure of AES and is required to make the cipher reversible.

We now turn to a discussion of each of the four stages used in AES. For each stage, we describe the 
forward (encryption) algorithm, the inverse (decryption) algorithm, and the rationale for the stage. This 
is followed by a discussion of key expansion.

As was mentioned in Chapter 4, AES uses arithmetic in the finite field GF(28), with the irreducible 

polynomial
[3]

 m(x) = x8 + x4 + x3 + x + 1. The developers of Rijndael give as their motivation for 
selecting this one of the 30 possible irreducible polynomials of degree 8 that it is the first one on the list 
given in [LIDL94].

[3] In the remainder of this discussion, references to GF(28) refer to the finite field defined with this polynomial.

Substitute Bytes Transformation

Forward and Inverse Transformations

The forward substitute byte transformation, called SubBytes, is a simple table lookup (Figure 5.4a). 
AES defines a 16 x 16 matrix of byte values, called an S-box (Table 5.4a), that contains a permutation 
of all possible 256 8-bit values. Each individual byte of State is mapped into a new byte in the following 
way: The leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a 
column value. These row and column values serve as indexes into the S-box to select a unique 8-bit 

output value. For example, the hexadecimal value
[4]

 {95} references row 9, column 5 of the S-box, 
which contains the value {2A}. Accordingly, the value {95} is mapped into the value {2A}.

[4] In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention in this 
chapter.

[Page 147]

Figure 5.4. AES Byte-Level Operations
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(This item is displayed on page 145 in the print version) 

[View full size image]

 
Table 5.4. AES S-Boxes

(This item is displayed on page 146 in the print version) 

[View full size image]
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Here is an example of the SubBytes transformation:
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The S-box is constructed in the following fashion:

1.  

Initialize the S-box with the byte values in ascending sequence row by row. The first row 
contains {00}, {01}, {02},.... {0F}; the second row contains {10}, {11}, etc.; and so on. Thus, 
the value of the byte at row x, column y is {xy}.

2.  

Map each byte in the S-box to its multiplicative inverse in the finite field GF(28); the value {00} 
is mapped to itself.

3.  

Consider that each byte in the S-box consists of 8 bits labeled (b7, b6, b5, b4, b3, b2, b1, b0). 

Apply the following transformation to each bit of each byte in the S-box:

Equation 5-1 

 
where c

i
 is the ith bit of byte c with the value {63}; that is, (c7c6c5c4c3c2c1c0) = (01100011). 

The prime (') indicates that the variable is to be updated by the value on the right. The AES 
standard depicts this transformation in matrix form as follows:

Equation 5-2 
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[Page 148]

Equation (5.2) has to be interpreted carefully. In ordinary matrix multiplication,
[5]

 each element in the 
product matrix is the sum of products of the elements or one row and one column. In this case, each 
element in the product matrix is the bitwise XOR of products of elements of one row and one column. 
Further, the final addition shown in Equation (5.2) is a bitwise XOR.

[5] For a brief review of the rules of matrix and vector multiplication, see the Math Refresher document and the Computer 
Science Student Resource site at williamstallings.com/StudentSupport.html.

As an example, consider the input value {95}. The multiplicative inverse in GF(28) is {95}1 = {8A}, 
which is 10001010 in binary. Using Equation (5.2),

 
The result is {2A}, which should appear in row {09} column {05} of the S-box. This is verified by 
checking Table 5.4a.

The inverse substitute byte transformation, called InvSubBytes, makes use of the inverse S-box 
shown in Table 5.4b. Note, for example, that the input {2A} produces the output {95} and the input 
{95} to the S-box produces {2A}. The inverse S-box is constructed by applying the inverse of the 
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transformation in Equation (5.1) followed by taking the multiplicative inverse in GF(28). The inverse 
transformation is:

b
i
' = b(i + 2) mod 8  b(i + 5) mod 8  b(i + 7) mod 8  d

i

where byte d = {05}, or 00000101. We can depict this transformation as follows:

 
To see that InvSubBytes is the inverse of SubBytes, label the matrices in SubBytes and InvSubBytes as 
X and Y, respectively, and the vector versions of constants c and d as C and D, respectively. For some 8-

bit vector B, Equation (5.2) becomes B' = XB  C. We need to show that Y(XB  C)  D = B. 

Multiply out, we must show YXB  YC  D = B. This becomes

[Page 149]
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We have demonstrated that YX equals the identity matrix, and the YC = D, so that YC  D equals the 
null vector.

Rationale

The S-box is designed to be resistant to known cryptanalytic attacks. Specifically, the Rijndael 
developers sought a design that has a low correlation between input bits and output bits, and the 
property that the output cannot be described as a simple mathematical function of the input [DAEM01]. 
In addition, the constant in Equation (5.1) was chosen so that the S-box has no fixed points [S-box(a) = 

a] and no "opposite fixed points" [S-box(a) = ], where  is the bitwise complement of a.

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a. However, the S-box is not self-
inverse in the sense that it is not true that S-box(a) = IS-box(a). For example, [S-box({95}) = {2A}, 
but IS-box({95}) = {AD}.
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[Page 150]

ShiftRows Transformation

Forward and Inverse Transformations

The forward shift row transformation, called ShiftRows, is depicted in Figure 5.5a. The first row of 
State is not altered. For the second row, a 1-byte circular left shift is performed. For the third row, a 2-
byte circular left shift is performed. For the fourth row, a 3-byte circular left shift is performed. The 
following is an example of ShiftRows:

Figure 5.5. AES Row and Column Operations

[View full size image]
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The inverse shift row transformation, called InvShiftRows, performs the circular shifts in the 
opposite direction for each of the last three rows, with a one-byte circular right shift for the second row, 
and so on.

Rationale

The shift row transformation is more substantial than it may first appear. This is because the State, as 
well as the cipher input and output, is treated as an array of four 4-byte columns. Thus, on encryption, 
the first 4 bytes of the plaintext are copied to the first column of State, and so on. Further, as will be 
seen, the round key is applied to State column by column. Thus, a row shift moves an individual byte 
from one column to another, which is a linear distance of a multiple of 4 bytes. Also note that the 
transformation ensures that the 4 bytes of one column are spread out to four different columns. Figure 
5.3 illustrates the effect.

[Page 151]

MixColumns Transformation
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Forward and Inverse Transformations

The forward mix column transformation, called MixColumns, operates on each column individually. 
Each byte of a column is mapped into a new value that is a function of all four bytes in that column. The 
transformation can be defined by the following matrix multiplication on State (Figure 5.5b):

Equation 5-3 

 
Each element in the product matrix is the sum of products of elements of one row and one column. In 

this case, the individual additions and multiplications
[6]

 are performed in GF(28). The MixColumns 

transformation on a single column j(0  j  3) of State can be expressed as

[6] We follow the convention of FIPS PUB 197 and use the symbol · to indicate multiplication over the finite field GF(28) and 

 to indicate bitwise XOR, which corresponds to addition in GF(28).

Equation 5-4 

 
The following is an example of MixColumns:

Let us verify the first column of this example. Recall from Section 4.6 that, in GF(28), addition is the 
bitwise XOR operation and that multiplication can be performed according to the rule established in 
Equation (4.10). In particular, multiplication of a value by x (i.e., by {02}) can be implemented as a 1-
bit left shift followed by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original 
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value (prior to the shift) is 1. Thus, to verify the MixColumns transformation on the first column, we 
need to show that

({02} · {87})
 ({03} · {6E})  {46}  {A6}

= {47}

{87}
 ({02} · {6E})  ({03} · {46})  {A6}

= {37}

{87}
 {6E}  ({02} · {46}  ({03} · {A6})

= {94}

({03} · {87})
 {6E}  {46}  ({02} · {A6}

= {ED}

 

[Page 152]

For the first equation, we have {02} · {87} = (0000 1110)  (0001 1011) = (0001 0101); and {03} · 

{6E} = {6E}  ({02} · {6E}) = (0110 1110)  (1101 1100) = (1011 0010). Then

 {02} · {87} = 0001 0101  

 {03} · {6E} = 1011 0010  

 {46} = 0100 0110  

 {A6} = 1010 0110

   0100 0111 = {47}

 
The other equations can be similarly verified.

The inverse mix column transformation, called InvMixColumns, is defined by the following matrix 
multiplication:

Equation 5-5 

 
It is not immediately clear that Equation (5.5) is the inverse of Equation (5.3). We need to show that:
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which is equivalent to showing that:

Equation 5-6 

 
That is, the inverse transformation matrix times the forward transformation matrix equals the identity 
matrix. To verify the first column of Equation (5.6), we need to show that:

({0E} · {02})  {0B}  {0D}  ({09} · {03}) = {01}

({09} · {02})  {0E}  {0B}  ({0D} · {03}) = {00}

({0D} · {02})  {09}  {0E}  ({0B} · {03}) = {00}

({0B} · {02})  {0D}  {09}  ({0E} · {03}) = {00}

[Page 153]

For the first equation, we have {0E} · {02})  00011100; and {09} · {03} = {09}  ({09} · {02}) 

= 00001001  00010010 = 00011011. Then

 {0E} · {02} = 00011100

 {0B} = 00001011

 {0D} = 00001101

 {09} · {03} = 00011011

   00000001
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The other equations can be similarly verified.

The AES document describes another way of characterizing the MixColumns transformation, which is in 
terms of polynomial arithmetic. In the standard, MixColumns is defined by considering each column of 
State to be a four-term polynomial with coefficients in GF(28). Each column is multiplied modulo (x4 + 
1) by the fixed polynomial a(x), given by

Equation 5-7 

 
Appendix 5A demonstrates that multiplication of each column of State by a(x) can be written as the 
matrix multiplication of Equation (5.3). Similarly, it can be seen that the transformation in Equation 
(5.5) corresponds to treating each column as a four-term polynomial and multiplying each column by b
(x), given by

Equation 5-8 

 
It can readily be shown that b(x) = a1 (x) mod (x4 + 1).

Rationale

The coefficients of the matrix in Equation (5.3) are based on a linear code with maximal distance 
between code words, which ensures a good mixing among the bytes of each column. The mix column 
transformation combined with the shift row transformation ensures that after a few rounds, all output 
bits depend on all input bits. See [DAEM99] for a discussion.

In addition, the choice of coefficients in MixColumns, which are all {01}, {02}, or {03}, was influenced 
by implementation considerations. As was discussed, multiplication by these coefficients involves at 
most a shift and an XOR. The coefficients in InvMixColumns are more formidable to implement. 
However, encryption was deemed more important than decryption for two reasons:

1.  

For the CFB and OFB cipher modes (Figures 6.5 and 6.6; described in Chapter 6), only 
encryption is used.

2.  

As with any block cipher, AES can be used to construct a message authentication code (Part 
Two), and for this only encryption is used.

AddRoundKey Transformation
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Forward and Inverse Transformations

In the forward add round key transformation, called AddRoundKey, the 128 bits of State are 
bitwise XORed with the 128 bits of the round key. As shown in Figure 5.4b, the operation is viewed as a 
columnwise operation between the 4 bytes of a State column and one word of the round key; it can also 
be viewed as a byte-level operation. The following is an example of AddRoundKey:

[Page 154]

The first matrix is State, and the second matrix is the round key.

The inverse add round key transformation is identical to the forward add round key transformation, 
because the XOR operation is its own inverse.

Rationale

The add round key transformation is as simple as possible and affects every bit of State. The complexity 
of the round key expansion, plus the complexity of the other stages of AES, ensure security.

AES Key Expansion

Key Expansion Algorithm

The AES key expansion algorithm takes as input a 4-word (16-byte) key and produces a linear array of 
44 words (176 bytes). This is sufficient to provide a 4-word round key for the initial AddRoundKey stage 
and each of the 10 rounds of the cipher. The following pseudocode describes the expansion:

[View full width]
KeyExpansion (byte key[16], word w[44])
{
    word temp
    for (i = 0; i < 4; i++) w[i] = (key[4*i],

 key[4*i+1],
                                   key[4*i+2],
                                   key[4*i+3]);
    for (i = 4; i < 44; i++)
    {
     temp = w[i  1];
     if (i mod 4 = 0) temp = SubWord (RotWord (temp))

                             Rcon[i/4];

     w[i] = w[i4]  temp
    }
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}

 

 
The key is copied into the first four words of the expanded key. The remainder of the expanded key is 
filled in four words at a time. Each added word w[i] depends on the immediately preceding word, w[i 
1], and the word four positions back,w[i 4]. In three out of four cases, a simple XOR is used. For a word 
whose position in the w array is a multiple of 4, a more complex function is used. Figure 5.6 illustrates 
the generation of the first eight words of the expanded key, using the symbol g to represent that 
complex function. The function g consists of the following subfunctions:

[Page 155]
1.  

RotWord performs a one-byte circular left shift on a word. This means that an input word [b0, 
b1, b2, b3] is transformed into [b1, b2, b3, b0].

2.  

SubWord performs a byte substitution on each byte of its input word, using the S-box (Table 
5.4a).

3.  

The result of steps 1 and 2 is XORed with a round constant, Rcon[j].

Figure 5.6. AES Key Expansion
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The round constant is a word in which the three rightmost bytes are always 0. Thus the effect of an XOR 
of a word with Rcon is to only perform an XOR on the leftmost byte of the word. The round constant is 
different for each round and is defined as Rcon[j] = (RC[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2 · RC[j - 
1] and with multiplication defined over the field GF(28). The values of RC[j] in hexadecimal are

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

 
For example, suppose that the round key for round 8 is

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as follows:

i (decimal) temp After 
RotWord

After 
SubWord

Rcon (9) After XOR 
with Rcon

w[i 4] w[i] = 

temp  w
[i 4]
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36 7F8D292F 8D292F7F 5DA515D2 1B000000 46A515D2 EAD27321 AC7766F3

 
Rationale

The Rijndael developers designed the expansion key algorithm to be resistant to known cryptanalytic 
attacks. The inclusion of a round-dependent round constant eliminates the symmetry, or similarity, 
between the ways in which round keys are generated in different rounds. The specific criteria that were 
used are as follows [DAEM99]:

[Page 156]

●     Knowledge of a part of the cipher key or round key does not enable calculation of many other 
round key bits

●     An invertible transformation [i.e., knowledge of any Nk consecutive words of the Expanded Key 
enables regeneration the entire expanded key (Nk = key size in words)]

●     Speed on a wide range of processors
●     Usage of round constants to eliminate symmetries
●     Diffusion of cipher key differences into the round keys; that is, each key bit affects many round 

key bits
●     Enough nonlinearity to prohibit the full determination of round key differences from cipher key 

differences only
●     Simplicity of description

The authors do not quantify the first point on the preceding list, but the idea is that if you know less 
than Nk consecutive words of either the cipher key or one of the round keys, then it is difficult to 
reconstruct the remaining unknown bits. The fewer bits one knows, the more difficult it is to do the 
reconstruction or to determine other bits in the key expansion.

Equivalent Inverse Cipher

As was mentioned, the AES decryption cipher is not identical to the encryption cipher (Figure 5.1). That 
is, the sequence of transformations for decryption differs from that for encryption, although the form of 
the key schedules for encryption and decryption is the same. This has the disadvantage that two 
separate software or firmware modules are needed for applications that require both encryption and 
decryption. There is, however, an equivalent version of the decryption algorithm that has the same 
structure as the encryption algorithm. The equivalent version has the same sequence of transformations 
as the encryption algorithm (with transformations replaced by their inverses). To achieve this 
equivalence, a change in key schedule is needed.

Two separate changes are needed to bring the decryption structure in line with the encryption structure. 
An encryption round has the structure SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard 
decryption round has the structure InvShiftRows, InvSubBytes, AddRoundKey, InvMixColumns. Thus, 
the first two stages of the decryption round need to be interchanged, and the second two stages of the 
decryption round need to be interchanged.

Interchanging InvShiftRows and InvSubBytes

InvShiftRows affects the sequence of bytes in State but does not alter byte contents and does not 
depend on byte contents to perform its transformation. InvSubBytes affects the contents of bytes in 
State but does not alter byte sequence and does not depend on byte sequence to perform its 
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transformation. Thus, these two operations commute and can be interchanged. For a given State S
i
,

InvShiftRows [InvSubBytes (S
i
)] = InvSubBytes [InvShiftRows (S

i
)]

[Page 157]

Interchanging AddRoundKey and InvMixColumns

The transformations AddRoundKey and InvMixColumns do not alter the sequence of bytes in State. If 
we view the key as a sequence of words, then both AddRoundKey and InvMixColumns operate on State 
one column at a time. These two operations are linear with respect to the column input. That is, for a 
given State S

i
 and a given round key w

j
:

InvMixColumns (S
i
  w

j
) = [InvMixColumns (S

i
)]  [InvMixColumns (w

j
)]

To see this, suppose that the first column of State S
i
 is the sequence (y0, y1, y2, y3) and the first 

column of the round key w
j
 is (k0, k1, k2, k3). Then we need to show that

 
Let us demonstrate that for the first column entry. We need to show that:

[{0E} · (y0  k0)]  [{0B} · (y1  k1)]  [{0D} · (y2  k2)]  [{09} · (y3  k3)]

= [{0E} · y0]  [{0B} · y1]  [{0D} · y2]  [{09} · y3]

 [[{0E} · k0] ] [{0B} · k1]  [{0D} · k2]  [{09} · k3]

This equation is valid by inspection. Thus, we can interchange AddRoundKey and InvMixColumns, 
provided that we first apply InvMixColumns to the round key. Note that we do not need to apply 
InvMixColumns to the round key for the input to the first AddRoundKey transformation (preceding the 
first round) nor to the last AddRoundKey transformation (in round 10). This is because these two 
AddRoundKey transformations are not interchanged with InvMixColumns to produce the equivalent 
decryption algorithm.

Figure 5.7 illustrates the equivalent decryption algorithm.
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Figure 5.7. Equivalent Inverse Cipher

(This item is displayed on page 158 in the print version) 
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Implementation Aspects

The Rijndael proposal [DAEM99] provides some suggestions for efficient implementation on 8-bit 
processors, typical for current smart cards, and on 32-bit processors, typical for PCs.

8-Bit Processor

AES can be implemented very efficiently on an 8-bit processor. AddRoundKey is a bytewise XOR 
operation. ShiftRows is a simple byte shifting operation. SubBytes operates at the byte level and only 
requires a table of 256 bytes.

The transformation MixColumns requires matrix multiplication in the field GF(28), which means that all 
operations are carried out on bytes. MixColumns only requires multiplication by {02} and {03}, which, 
as we have seen, involved simple shifts, conditional XORs, and XORs. This can be implemented in a 
more efficient way that eliminates the shifts and conditional XORs. Equation Set (5.4) shows the 
equations for the MixColumns transformation on a single column. Using the identity {03} · x = ({02} · 

x)  x, we can rewrite Equation Set (5.4) as follows:

[Page 158]

Equation 5-9 

 
Equation Set (5.9) is verified by expanding and eliminating terms.

[Page 159]

The multiplication by {02} involves a shift and a conditional XOR. Such an implementation may be 
vulnerable to a timing attack of the sort described in Section 3.4. To counter this attack and to increase 
processing efficiency at the cost of some storage, the multiplication can be replaced by a table lookup. 
Define the 256-byte table X2, such that X2[i] = {02} · i. Then Equation Set (5.9) can be rewritten as
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Tmp = so, j  s1, j  s2, j  s3, j

s'0, j = s0, j  Tmp  X2[so, j  s1, j]

s'1, c = s1, j  Tmp  X2[s1, j  s2, j]

s'2, c = s2, j  Tmp  X2[s2, j  s3, j]

s'3, j = s3, j  Tmp  X2[s3, j  s0, j]

32-Bit Processor

The implementation described in the preceding subsection uses only 8-bit operations. For a 32-bit 
processor, a more efficient implementation can be achieved if operations are defined on 32-bit words. To 
show this, we first define the four transformations of a round in algebraic form. Suppose we begin with a 
State matrix consisting of elements ai,j and a round key matrix consisting of elements ki,j. Then the 

transformations can be expressed as follows:

SubBytes bi,j = S[ai,j]

ShiftRows

MixColumns

AddRoundKey

 
In the ShiftRows equation, the column indices are taken mod 4. We can combine all of these expressions 
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into a single equation:

 

[Page 160]

In the second equation, we are expressing the matrix multiplication as a linear combination of vectors. 
We define four 256-word (1024-byte) tables as follows:

 
Thus, each table takes as input a byte value and produces a column vector (a 32-bit word) that is a 
function of the S-box entry for that byte value. These tables can be calculated in advance.

We can define a round function operating on a column in the following fashion:
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As a result, an implementation based on the preceding equation requires only four table lookups and 
four XORs per column per round, plus 4 Kbytes to store the table. The developers of Rijndael believe 
that this compact, efficient implementation was probably one of the most important factors in the 
selection of Rijndael for AES.
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[Page 160 (continued)]

5.3. Recommended Reading and Web Sites

The most thorough description of AES so far available is the book by the developers of AES, [DAEM02]. 
The authors also provide a brief description and design rationale in [DAEM01]. [LAND04] is a rigorous 
mathematical treatment of AES and its cryptanalysis.

DAEM01 Daemen, J., and Rijmen, V. "Rijndael: The Advanced Encryption Standard." 
Dr. Dobb's Journal, March 2001.

DAEM02 Daemen, J., and Rijmen, V. The Design of Rijndael: The Wide Trail Strategy 
Explained. New York, Springer-Verlag, 2002.

LAND04 Landau, S. "Polynomials in the Nation's Service: Using Algebra to Design the 
Advanced Encryption Standard." American Mathematical Monthly, February 2004.
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Recommended Web Sites

●     AES home page: NIST's page on AES. Contains the standard plus a number of other relevant 
documents.

●     The AES Lounge: Contains a comprehensive bibliography of documents and papers on AES, 
with access to electronic copies.
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5.4. Key Terms, Review Questions, and Problems

Key Terms

Advanced Encryption Standard (AES)

National Institute of Standards and Technology (NIST)

power analysis

Rijndael

S-box

Review Questions

5.1 What was the original set of criteria used by NIST to evaluate candidate AES ciphers?

5.2 What was the final set of criteria used by NIST to evaluate candidate AES ciphers?

5.3 What is power analysis?

5.4 What is the difference between Rijndael and AES?

5.5 What is the purpose of the State array?

5.6 How is the S-box constructed?

5.7 Briefly describe SubBytes.

5.8 Briefly describe ShiftRows.

5.9 How many bytes in State are affected by ShiftRows?
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5.10 Briefly describe MixColumns.

5.11 Briefly describe AddRoundKey.

5.12 Briefly describe the key expansion algorithm.

5.13 What is the difference between SubBytes and SubWord?

5.14 What is the difference between ShiftRows and RotWord?

5.15 What is the difference between the AES decryption algorithm and the equivalent 
inverse cipher?

Problems

5.1 In the discussion of MixColumns and Inverse MixColumns, it was stated that

b(x) = a1(x) mod (x4 + 1)

where a(x) = {03}x3 + {01}x2 + {01}x + {02} and b(x) = {03}x3 + {0D}x2 + {09}
x + {0E}. Show that this is true.

[Page 162]

5.2 1.  
What is {01}1 in GF(28)?

2.  

Verify the entry for {01} in the S-box.

5.3 Show the first eight words of the key expansion for a 128-bit key of all zeros.
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5.4 Given the plaintext {000102030405060708090A0B0C0D0E0F} and the key 
{01010101010101010101010101010101},

a.  

Show the original contents of State, displayed as a 4 x 4 matrix.

b.  

Show the value of State after initial AddRoundKey.

c.  

Show the value of State after SubBytes.

d.  

Show the value of State after ShiftRows.

e.  

Show the value of State after MixColumns.

5.5 Verify Equation (5.11). That is show that xi (x4 + 1) = xi mod 4.

5.6 Compare AES to DES. For each of the following elements of DES, indicate the 
comparable element in AES or explain why it is not needed in AES.

a.  

XOR of subkey material with the input to the f function

b.  

XOR of the f function output with the left half of the block

c.  

The f function

d.  

Permutation P

e.  
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Swapping of halves of the block

5.7 In the subsection on implementation aspects, it is mentioned that the use of tables 
helps thwart timing attacks. Suggest an alternative technique.

5.8 In the subsection on implementation aspects, a single algebraic equation is developed 
that describes the four stages of a typical round of the encryption algorithm. Provide 
the equivalent equation for the tenth round.

5.9 Compute the output of the MixColumns transformation for the following sequence of 
input bytes "67 89 AB CD". Apply the InvMixColumns transformation to the obtained 
result to verify your calculations. Change the first byte of the input from '67' to '77', 
perform the MixColumns transformation again for the new input, and determine how 
many bits have changed in the output. Note: You can perform all calculations by hand 
or write a program supporting these computations. If you choose to write a program, 
it should be written entirely by you; no use of libraries or public domain source code is 
allowed in this assignment.

5.10 Use the key 1010 0111 0011 1011 to encrypt the plaintext "ok" as expressed in 
ASCII, that is 0110 1111 0110 1011. The designers of S-AES got the ciphertext 0000 
0111 0011 1000. Do you?

5.11 Show that the matrix given below, with entries in GF(24), is the inverse of the matrix 
used in the MixColumns step of S-AES.

 

5.12 Carefully write up a complete decryption of the ciphertext 0000 0111 0011 1000, 
using the key 1010 0111 0011 1011 and the S-AES algorithm. You should get the 
plaintext we started with in Problem 5.10. Note that the inverse of the S-boxes can be 
done with a reverse table lookup. The inverse of the MixColumns step is given by the 
matrix in the previous problem.

Programming Problems

5.13 Create software that can encrypt and decrypt using S-AES. Test data: a binary 
plaintext of 0110 1111 0110 1011 encrypted with a binary key of 1010 0111 0011 
1011 should give a binary ciphertext of 0000 0111 0011 1000 less ecb $$$). 
Decryption should work correspondingly
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5.14 Implement a differential cryptanalysis attack on 1-round S-AES.
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Appendix 5A Polynomials with Coefficients in GF(28)

In Section 4.5, we discussed polynomial arithmetic in which the coefficients are in Z
p
 and the 

polynomials are defined modulo a polynomial M(x) whose highest power is some integer n. In this case, 
addition and multiplication of coefficients occurred within the field Z

p
; that is, addition and multiplication 

were performed modulo p.

The AES document defines polynomial arithmetic for polynomials of degree 3 or less with coefficients in 
GF(28). The following rules apply:

1.  

Addition is performed by adding corresponding coefficients in GF(28). As was pointed out Section 
4.5, if we treat the elements of GF(28) as 8-bit strings, then addition is equivalent to the XOR 
operation. So, if we have

Equation 5-8 

 
Equation 5-9 

 
then

a(x) + b(x) = (a3  b3)x3 + (a2  b2)x2 + (a1  b1)x + (a0  b0)

2.  

Multiplication is performed as in ordinary polynomial multiplication, with two refinements:

a.  

Coefficients are multiplied in GF(28).

b.  
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The resulting polynomial is reduced mod (x4 + 1).

We need to keep straight which polynomial we are talking about. Recall from Section 4.6 that each 
element of GF(28) is a polynomial of degree 7 or less with binary coefficients, and multiplication is 
carried out modulo a polynomial of degree 8. Equivalently, each element of GF(28) can be viewed as an 
8-bit byte whose bit values correspond to the binary coefficients of the corresponding polynomial. For 
the sets defined in this section, we are defining a polynomial ring in which each element of this ring is a 
polynomial of degree 3 or less with coefficients in GF(28), and multiplication is carried out modulo a 
polynomial of degree 4. Equivalently, each element of this ring can be viewed as a 4-byte word whose 
byte values are elements of GF(28) that correspond to the 8-bit coefficients of the corresponding 
polynomial.

We denote the modular product of a(x) and b(x) by a(x)  b(x). To compute d(x) = a(x)  b(x), the 
first step is to perform a multiplication without the modulo operation and to collect coefficients of like 
powers. Let us express this as c(x) = a(x) x b(x) Then

Equation 5-10 

 
where

c0 = a0 · b0

c1 = (a1 · b0)  (a0 · b1)

c2 = (a2 · b0)  (a1 · b1)  (a0 · b2)

c3 = (a3 · b0)  (a2 · b1)  (a1 · b2)  (a0 · b3)

c4 = (a3 · b1)  (a2 · b2)  (a1 · b3)

c5 = (a3 · b2)  (a2 · b3)

c6 = (a3 · b3)

The final step is to perform the modulo operation:

d(x) = c(x) mod (x4 + 1)

That is, d(x) must satisfy the equation

c(x) = [(x4 + 1) x q(x)]  d(x)
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such that the degree of d(x) is 3 or less.

[Page 164]

A practical technique for performing multiplication over this polynomial ring is based on the observation 
that

Equation 5-11 

 
If we now combine Equations (5.10) and (5.11), we end up with

d(x) = c(x) mod (x4 + 1) = [c6x6 + c5x5 + c4x4 + c3x3 + c2x2 + c1x + c0] mod (x4 + 1)

= c3x3 + (c2  c6)x2 + (c1  c5)x + (c0  c4)

Expanding the c
i
 coefficients, we have the following equations for the coefficients of d(x):

d0 = (a0 · b0)  (a3 · b1)  (a) · b2)  (a1 · b3)

d1 = (a1 · b0)  (a0 · b1)  (a3 · b2)  (a) · b3)

d2 = (a2) · b0)  (a1 · b1)  (a0 · b2)  (a3 · b3)

d3 = (a3 · b0)  (a) · b1)  (a1 · b2)  (a0 · b3)

This can be written in matrix form:

Equation 5-12 
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MixColumns Transformation

In the discussion of MixColumns, it was stated that there were two equivalent ways of defining the 
transformation. The first is the matrix multiplication shown in Equation (5.3), repeated here:

 
The second method is to treat each column of State as a four-term polynomial with coefficients in GF
(28). Each column is multiplied modulo (x4 + 1) by the fixed polynomial a(x), given by

a(x = {03}x3 + {01}x2 + {01}x + {02}

From Equation (5.8), we have a3 = {03}; a2 = {01}; a0 = {02}. For the jth column of State, we have 

the polynomial col
j
(x) = s3,j

x3 + s2,j
x2 + s1,j

x + s0,j
. Substituting into Equation (5.12), we can express d

(x) = a(x) x col
j
(x) as

 
which is equivalent to Equation (5.3).

Multiplication by x

Consider the multiplication of a polynomial in the ring by x: c(x) = x  b(x). We have

c(x) = x  b(x) = [x x (b3x3) + b2x2 + b1x + b0)] mod (x4 + 1)

[Page 165]

= (b3x4 + b2x3 + b1x2 + b0x) mod (x4 + 1)

= b2x3 + b1x2 + b0x + b3
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Thus, multiplication by x corresponds to a 1-byte circular left shift of the 4 bytes in the word 
representing the polynomial. If we represent the polynomial as a 4-byte column vector, then we have
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[Page 165 (continued)]

Appendix 5B Simplified AES

Simplified AES (S-AES) was developed by Professor Edward Schaefer of Santa Clara University and 
several of his students [MUSA03]. It is an educational rather than a secure encryption algorithm. It has 
similar properties and structure to AES with much smaller parameters. The reader might find it useful to 
work through an example by hand while following the discussion in this appendix. A good grasp of S-
AES will make it easier for the student to appreciate the structure and workings of AES.

Overview

Figure 5.8 illustrates the overall structure of S-AES. The encryption algorithm takes a 16-bit block of 
plaintext as input and a 16-bit key and produces a 16-bit block of ciphertext as output. The S-AES 
decryption algorithm takes an 16-bit block of ciphertext and the same 16-bit key used to produce that 
ciphertext as input and produces the original 16-bit block of plaintext as output.

[Page 166]

Figure 5.8. S-AES Encryption and Decryption

(This item is displayed on page 165 in the print version) 

[View full size image]
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The encryption algorithm involves the use of four different functions, or transformations: add key (A

K
) 

nibble substitution (NS), shift row (SR), and mix column (MC), whose operation is explained 
subsequently.

We can concisely express the encryption algorithm as a composition
[7]

 of functions:

[7] Definition: If f and g are two functions, then the function F with the equation y= F(x) = g[f(x)] is called the 
composition of f and g and is denoted as F = g º f.

A
K2

 º SR º NS º A
K1

 º MC º SR º NS º A
K0

so that A
K0

 is applied first.

The encryption algorithm is organized into three rounds. Round 0 is simply an add key round; round 1 is 
a full round of four functions; and round 2 contains only 3 functions. Each round includes the add key 
function, which makes use of 16 bits of key. The initial 16-bit key is expanded to 48 bits, so that each 
round uses a distinct 16-bit round key.

Each function operates on a 16-bit state, treated as a 2 x 2 matrix of nibbles, where one nibble equals 4 
bits. The initial value of the state matrix is the 16-bit plaintext; the state matrix is modified by each 
subsequent function in the encryption process, producing after the last function the 16-bit ciphertext. As 
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Figure 5.9a shows, the ordering of nibbles within the matrix is by column. So, for example, the first 
eight bits of a 16-bit plaintext input to the encryption cipher occupy the first column of the matrix, and 
the second eight bits occupy the second column. The 16-bit key is similarly organized, but it is 
somewhat more convenient to view the key as two bytes rather than four nibbles (Figure 5.9b). The 
expanded key of 48 bits is treated as three round keys, whose bits are labeled as follows: K0 = k0...k15; 

K1 = k16...k31; K2 = k32...k47.

Figure 5.9. S-AES Data Structures

[View full size image]

 
Figure 5.10 shows the essential elements of a full round of S-AES.

Figure 5.10. S-AES Encryption Round

(This item is displayed on page 167 in the print version) 

[View full size image]
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Decryption is also shown in Figure 5.8 and is essentially the reverse of encryption:

A
K0

 º INS º ISR º IMC º A
K1

 º INS º ISR º A
K2

[Page 168]

in which three of the functions have a corresponding inverse function: inverse nibble substitution (INS), 
inverse shift row (ISR), and inverse mix column (IMC).

S-AES Encryption and Decryption

We now look at the individual functions that are part of the encryption algorithm.

Add Key

The add key function consists of the bitwise XOR of the 16-bit state matrix and the 16-bit round key. 
Figure 5.11 depicts this as a columnwise operation, but it can also be viewed as a nibble-wise or bitwise 
operation. The following is an example:

Figure 5.11. S-AES Transformations

[View full size image]
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The inverse of the add key function is identical to the add key function, because the XOR operation is its 
own inverse.

[Page 169]

Nibble Substitution
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The nibble substitution function is a simple table lookup (Figure 5.11). AES defines a 4 x 4 matrix of 
nibble values, called an S-box (Table 5.5a), that contains a permutation of all possible 4-bit values. Each 
individual nibble of the state matrix is mapped into a new nibble in the following way: The leftmost 2 
bits of the nibble are used as a row value and the rightmost 2 bits are used as a column value. These 
row and column values serve as indexes into the S-box to select a unique 4-bit output value. For 
example, the hexadecimal value A references row 2, column 2 of the S-box, which contains the value 0. 
Accordingly, the value A is mapped into the value 0.

Table 5.5. S-AES S-Boxes

Note: Hexadecimal numbers in shaded boxes; binary numbers in unshaded boxes.

[View full size image]

 
Here is an example of the nibble substitution transformation:

The inverse nibble substitution function makes use of the inverse S-box shown in Table 5.5b. Note, for 
example, that the input 0 produces the output A, and the input A to the S-box produces 0.

Shift Row

The shift row function performs a one-nibble circular shift of the second row of the state matrix; the first 
row is not altered (Figure 5.11). The following is an example:

The inverse shift row function is identical to the shift row function, because it shifts the second row back 
to its original position.

Mix Column

The mix column function operates on each column individually. Each nibble of a column is mapped into a 
new value that is a function of both nibbles in that column. The transformation can be defined by the 
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following matrix multiplication on the state matrix (Figure 5.11):

 
Performing the matrix multiplication, we get:

S'0,0 = S0,0  (4 · S1,0)

S'1,0 = (4 · S0,0)  S1,0

S'0,1 = S0,1  (4 · S1,1)

S'1,1 = (4 · S0,1)  S1,1

[Page 170]

Where arithmetic is performed in GF(24), and the symbol · refers to multiplication in GF(24). Appendix E 
provides the addition and multiplication tables. The following is an example:

 
The inverse mix column function is defined as follows:

 
We demonstrate that we have indeed defined the inverse in the following fashion:

 
The preceding matrix multiplication makes use of the following results in GF(24): 9 + (2 · 4) = 9 + 8 = 
1; (9 · 4) + 2 = 2 + 2 = 0. These operations can be verified using the arithmetic tables in Appendix E or 
by polynomial arithmetic.
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The mix column function is the most difficult to visualize. Accordingly, we provide an additional 
perspective on it in Appendix E.

Key Expansion

For key expansion, the 16 bits of the initial key are grouped into a row of two 8-bit words. Figure 5.12 
shows the expansion into 6 words, by the calculation of 4 new words from the initial 2 words. The 
algorithm is as follows:

w2 = w0  g(w1) = w0  RCON(1)  SubNib(RotNib(w1))

w3 = w2  w1

w4 = w2  g(w3) = w2  RCON(2)  SubNib(RotNib(w3))

w5 = w4  w3

Figure 5.12. S-AES Key Expansion

(This item is displayed on page 171 in the print version) 

[View full size image]
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RCON is a round constant, defined as follows: RC[i] = xi + 2, so that RC[1] = x3 = 1000 and RC[2] = x4 
mod (x4 + x + 1) = x + 1 = 0011. RC[i] forms the leftmost nibble of a byte, with the rightmost nibble 
being all zeros. Thus, RCON(1) = 10000000 and RCON(2) = 00110000.

For example, suppose the key is 2D55 = 0010 1101 0101 0101 = w0w1. Then

w2 = 00101101  10000000  SubNib(01010101)

= 00101101  10000000  00010001 = 10111100

w3 = 10111100  01010101 = 11101001
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w4 = 10111110  00110000  SubNib(10011110)

= 10111100  00110000  00101111 = 10100011

w5 = 10100011  11101001 = 01001010

The S-Box

The S-box is constructed as follows:

1.  

Initialize the S-box with the nibble values in ascending sequence row by row. The first row 
contains the hexadecimal values 0, 1, 2, 3; the second row contains 4, 5, 6, 7; and so on. Thus, 
the value of the nibble at row i, column j is 4i + j.

[Page 171]
2.  

Treat each nibble as an element of the finite field GF(24) modulo x4 +x + 1. Each nibble a0a1a2a3 

represents a polynomial of degree 3.

3.  

Map each byte in the S-box to its multiplicative inverse in the finite field GF(24) modulo x4 + x + 
1; the value 0 is mapped to itself.

4.  

Consider that each byte in the S-box consists of 4 bits labeled (b0, b1, b2, b3). Apply the 

following transformation to each bit of each byte in the S-box: The AES standard depicts this 
transformation in matrix form as follows:

 
The prime (') indicates that the variable is to be updated by the value on the right. Remember 
that addition and multiplication are being calculated modulo 2.

[Page 172]
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Table 5.5a shows the resulting S-box. This is a nonlinear, invertible matrix. The inverse S-box is shown 
in Table 5.5b.

S-AES Structure

We can now examine several aspects of interest concerning the structure of AES. First, note that the 
encryption and decryption algorithms begin and end with the add key function. Any other function, at 
the beginning or end, is easily reversible without knowledge of the key and so would add no security but 
just a processing overhead. Thus, there is a round 0 consisting of only the add key function.

The second point to note is that round 2 does not include the mix column function. The explanation for 
this in fact relates to a third observation, which is that although the decryption algorithm is the reverse 
of the encryption algorithm, as clearly seen in Figure 5.8, it does not follow the same sequence of 
functions. Thus

Encryption: A
K2

 º SR º NS º A
K1

 º MC º SR º NS º A
K0

Decryption: A
K0

 º INS º ISR º IMC º A
K1

 º INS º ISR º A
K2

From an implementation point of view, it would be desirable to have the decryption function follow the 
same function sequence as encryption. This allows the decryption algorithm to be implemented in the 
same way as the encryption algorithm, creating opportunities for efficiency.

Note that if we were able to interchange the second and third functions, the fourth and fifth functions, 
and the sixth and seventh functions in the decryption sequence, we would have the same structure as 
the encryption algorithm. Let's see if this is possible. First, consider the interchange of INS and ISR. 
Given a state N consisting of the nibbles (N0, N1, N2, N3) the transformation INS(ISR(N)) proceeds as 

follows:

 
Where IS refers to the inverse S-Box. Reversing the operations, the transformation ISR(INS(N) 
proceeds as follows:

 
which is the same result. Thus, INS(ISR(N)) = ISR(INS(N)).

Now consider the operation of inverse mix column followed by add key: IMC(A
K1

(N)) where the round 

key K1 consists of the nibbles (k0,0, k1,0, k0,1, k1,1) Then:

file:///D|/1/0131873164/ch05lev1sec6.html (11 von 12) [14.10.2007 09:40:33]



Appendix 5B Simplified AES
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All of the above steps make use of the properties of finite field arithmetic. The result is that IMC(A
K1

(N)) 

= IMC(K1  IMC(N). Now let us define the inverse round key for round 1 to be IMC(K1) and the inverse 

add key operation IA
K1

 to be the bitwise XOR of the inverse round key with the state vector. Then we 

have IMC(A
K1

(N)) = IA
K1

(IMC(N)). As a result, we can write the following:

Encryption: A
K2

 º SR º NS º A
K1

 º MC º SR º NS º A
K0

Decryption: A
K0

 º INS º ISR º IMC º A
K1

 º INS º ISR º A
K2

Decryption: A
K0

 º ISR º INS º AIMC(K1) º IMC º ISR º INS º A
K2

Both encryption and decryption now follow the same sequence. Note that this derivation would not work 
as effectively if round 2 of the encryption algorithm included the MC function. In that case, we would 
have

Encryption: A
K2

 º MC º SR º NS º A
K1

 º MC º SR º NS º A
K0

Decryption: A
K0

 º INS º ISR º IMC º A
K1

 º INS º ISR º IMC º A
K2

There is now no way to interchange pairs of operations in the decryption algorithm so as to achieve the 
same structure as the encryption algorithm.
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"I am fairly familiar with all the forms of secret writings, and am myself the author of a 
trifling monograph upon the subject, in which I analyze one hundred and sixty separate 
ciphers," said Holmes.

The Adventure of the Dancing Men, Sir Arthur Conan Doyle

Key Points

●     Multiple encryption is a technique in which an encryption algorithm is used multiple 
times. In the first instance, plaintext is converted to ciphertext using the encryption 
algorithm. This ciphertext is then used as input and the algorithm is applied again. 
This process may be repeated through any number of stages.

●     Triple DES makes use of three stages of the DES algorithm, using a total of two or 
three distinct keys.

●     A mode of operation is a technique for enhancing the effect of a cryptographic 
algorithm or adapting the algorithm for an application, such as applying a block 
cipher to a sequence of data blocks or a data stream.

●     Five modes of operation have been standardized for use with symmetric block 
ciphers such as DES and AES: electronic codebook mode, cipher block chaining 
mode, cipher feedback mode, output feedback mode, and counter mode.

●     A stream cipher is a symmetric encryption algorithm in which ciphertext output is 
produced bit-by-bit or byte-by-byte from a stream of plaintext input. The most 
widely used such cipher is RC4.

 
This chapter continues our discussion of symmetric ciphers. We begin with the topic of multiple 
encryption, looking in particular at the most widely used multiple-encryption scheme: triple DES.

The chapter next turns to the subject of block cipher modes of operation. We find that there are a 
number of different ways to apply a block cipher to plaintext, each with its own advantages and 
particular applications.

Finally, this chapter addresses the subject of symmetric stream ciphers, which differ in significant ways 
from symmetric block ciphers. We also look at the most important such cipher, RC4.
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[Page 175 (continued)]

6.1. Multiple Encryption and Triple DES

Given the potential vulnerability of DES to a brute-force attack, there has been considerable interest in 
finding an alternative. One approach is to design a completely new algorithm, of which AES is a prime 
example. Another alternative, which would preserve the existing investment in software and equipment, 
is to use multiple encryption with DES and multiple keys. We begin by examining the simplest example 
of this second alternative. We then look at the widely accepted triple DES (3DES) approach.

[Page 176]

Double DES

The simplest form of multiple encryption has two encryption stages and two keys (Figure 6.1a). Given a 
plaintext P and two encryption keys K1 and K2, ciphertext C is generated as

C = E(K2, E(K1, P))

Figure 6.1. Multiple Encryption
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Decryption requires that the keys be applied in reverse order:

P = D(K1, D(K2, C))

For DES, this scheme apparently involves a key length of 56 x 2 = 112 bits, of resulting in a dramatic 
increase in cryptographic strength. But we need to examine the algorithm more closely.

[Page 177]
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Reduction to a Single Stage

Suppose it were true for DES, for all 56-bit key values, that given any two keys K1 and K2, it would be 

possible to find a key K3 such that

Equation 6-1 

 
If this were the case, then double encryption, and indeed any number of stages of multiple encryption 
with DES, would be useless because the result would be equivalent to a single encryption with a single 
56-bit key.

On the face of it, it does not appear that Equation (6.1) is likely to hold. Consider that encryption with 
DES is a mapping of 64-bit blocks to 64-bit blocks. In fact, the mapping can be viewed as a 
permutation. That is, if we consider all 264 possible input blocks, DES encryption with a specific key will 
map each block into a unique 64-bit block. Otherwise, if, say, two given input blocks mapped to the 
same output block, then decryption to recover the original plaintext would be impossible. With 264 
possible inputs, how many different mappings are there that generate a permutation of the input 
blocks? The value is easily seen to be

 
On the other hand, DES defines one mapping for each different key, for a total number of mappings:

256>1017

Therefore, it is reasonable to assume that if DES is used twice with different keys, it will produce one of 
the many mappings that are not defined by a single application of DES. Although there was much 
supporting evidence for this assumption, it was not until 1992 that the assumption was proved 
[CAMP92].

Meet-in-the-Middle Attack

Thus, the use of double DES results in a mapping that is not equivalent to a single DES encryption. But 
there is a way to attack this scheme, one that does not depend on any particular property of DES but 
that will work against any block encryption cipher.

The algorithm, known as a meet-in-the-middle attack, was first described in [DIFF77]. It is based on the 
observation that, if we have

C = E(K2, E(K1, P))

then (see Figure 6.1a)
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X = E(K1, P) = D(K2, P)

Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all 256 possible values of 
K1 Store these results in a table and then sort the table by the values of X. Next, decrypt C using all 256 

possible values of K2. As each decryption is produced, check the result against the table for a match. If 

a match occurs, then test the two resulting keys against a new known plaintext-ciphertext pair. If the 
two keys produce the correct ciphertext, accept them as the correct keys.

[Page 178]

For any given plaintext P, there are 264 possible ciphertext values that could be produced by double 
DES. Double DES uses, in effect, a 112-bit key, so that there are 2112 possible keys. Therefore, on 
average, for a given plaintext P, the number of different 112-bit keys that will produce a given 
ciphertext C is 2112/264 = 248. Thus, the foregoing procedure will produce about 248 false alarms on the 
first (P, C) pair. A similar argument indicates that with an additional 64 bits of known plaintext and 
ciphertext, the false alarm rate is reduced to 248-64 = 2-16 Put another way, if the meet-in-the-middle 
attack is performed on two blocks of known plaintext-ciphertext, the probability that the correct keys 
are determined is 1 2-16. The result is that a known plaintext attack will succeed against double DES, 
which has a key size of 112 bits, with an effort on the order of 256, not much more than the 255 
required for single DES.

Triple DES with Two Keys

An obvious counter to the meet-in-the-middle attack is to use three stages of encryption with three 
different keys. This raises the cost of the known-plaintext attack to 2112, which is beyond what is 
practical now and far into the future. However, it has the drawback of requiring a key length of 56 x 3 = 
168 bits, which may be somewhat unwieldy.

As an alternative, Tuchman proposed a triple encryption method that uses only two keys [TUCH79]. The 
function follows an encrypt-decrypt-encrypt (EDE) sequence (Figure 6.1b):

C = E(K1, D(K2, E(K1, P)))

There is no cryptographic significance to the use of decryption for the second stage. Its only advantage 
is that it allows users of 3DES to decrypt data encrypted by users of the older single DES:

C = E(K1, D(K1, E(K1, P))) = E(K1, P)

3DES with two keys is a relatively popular alternative to DES and has been adopted for use in the key 

management standards ANS X9.17 and ISO 8732.
[1]

[1] (ANS) American National Standard: Financial Institution Key Management (Wholesale). From its title, X9.17 appears to be 
a somewhat obscure standard. Yet a number of techniques specified in this standard have been adopted for use in other 
standards and applications, as we shall see throughout this book.

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith [COPP94] notes that the 

cost of a brute-force key search on 3DES is on the order of 2112  (5 x 1033) and estimates that the 
cost of differential cryptanalysis suffers an exponential growth, compared to single DES, exceeding 1052.
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It is worth looking at several proposed attacks on 3DES that, although not practical, give a flavor for the 
types of attacks that have been considered and that could form the basis for more successful future 
attacks.

[Page 179]

The first serious proposal came from Merkle and Hellman [MERK81]. Their plan involves finding plaintext 
values that produce a first intermediate value of A = 0 (Figure 6.1b) and then using the meet-in-the-
middle attack to determine the two keys. The level of effort is 256, but the technique requires 256 
chosen plaintext-ciphertext pairs, a number unlikely to be provided by the holder of the keys.

A known-plaintext attack is outlined in [VANO90]. This method is an improvement over the chosen-
plaintext approach but requires more effort. The attack is based on the observation that if we know A 
and C (Figure 6.1b), then the problem reduces to that of an attack on double DES. Of course, the 
attacker does not know A, even if P and C are known, as long as the two keys are unknown. However, 
the attacker can choose a potential value of A and then try to find a known (P, C) pair that produces A. 
The attack proceeds as follows:

1.  

Obtain n (P, C) pairs. This is the known plaintext. Place these in a table (Table 1) sorted on the 
values of P (Figure 6.2b).

Figure 6.2. Known-Plaintext Attack on Triple DES
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2.  

Pick an arbitrary value a for A, and create a second table (Figure 6.2c) with entries defined in the 
following fashion. For each of the 256 possible keys K1 = i, calculate the plaintext value Pi that 

produces a:

Pi = D(i, a)

[Page 180]

For each Pi that matches an entry in Table 1, create an entry in Table 2 consisting of the K1 value 

and the value of B that is produced for the (P, C) pair from Table 1, assuming that value of K1:

B = D(i, C)

At the end of this step, sort Table 2 on the values of B.

3.  
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We now have a number of candidate values of K1 in Table 2 and are in a position to search for a 

value of K2. For each of the 256 possible keys K2 = j, calculate the second intermediate value for 

our chosen value of a:

Bj = D(j, a)

At each step, look up Bj in Table 2. If there is a match, then the corresponding key i from Table 2 

plus this value of j are candidate values for the unknown keys (K1, K2). Why? Because we have 

found a pair of keys (i, j) that produce a known (P, C) pair (Figure 6.2a).

4.  

Test each candidate pair of keys (i, j) on a few other plaintext-ciphertext pairs. If a pair of keys 
produces the desired ciphertext, the task is complete. If no pair succeeds, repeat from step 1 
with a new value of a.

For a given known (P, C), the probability of selecting the unique value of a that leads to success is 
1/264. Thus, given n (P, C) pairs, the probability of success for a single selected value of a is n/264. A 
basic result from probability theory is that the expected number of draws required to draw one red ball 
out of a bin containing n red balls and N n green balls is (N + 1)/(n + 1) if the balls are not replaced. So 
the expected number of values of a that must be tried is, for large n,

 
Thus, the expected running time of the attack is on the order of

 
Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES may feel some 
concern. Thus, many researchers now feel that three-key 3DES is the preferred alternative (e.g., 
[KALI96a]). Three-key 3DES has an effective key length of 168 bits and is defined as follows:

C = E(K3, D(K2, E(K1, P)))

Backward compatibility with DES is provided by putting K3 = K2 or K1 = K2.

A number of Internet-based applications have adopted three-key 3DES, including PGP and S/MIME, both 
discussed in Chapter 15.
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6.2. Block Cipher Modes of Operation

A block cipher algorithm is a basic building block for providing data security. To apply a block cipher in a 
variety of applications, four "modes of operation" have been defined by NIST (FIPS 81). In essence, a 
mode of operation is a technique for enhancing the effect of a cryptographic algorithm or adapting the 
algorithm for an application, such as applying a block cipher to a sequence of data blocks or a data 
stream. The four modes are intended to cover virtually all the possible applications of encryption for 
which a block cipher could be used. As new applications and requirements have appeared, NIST has 
expanded the list of recommended modes to five in Special Publication 800-38A. These modes are 
intended for use with any symmetric block cipher, including triple DES and AES. The modes are 
summarized in Table 6.1 and described briefly in the remainder of this section.

Table 6.1. Block Cipher Modes of Operation

Mode Description Typical Application

Electronic 
Codebook (ECB)

Each block of 64 plaintext 
bits is encoded 
independently using the 
same key.

●     Secure transmission of single values (e.
g., an encryption key)

Cipher Block 
Chaining (CBC)

The input to the encryption 
algorithm is the XOR of the 
next 64 bits of plaintext and 
the preceding 64 bits of 
ciphertext.

●     General-purpose block-oriented 
transmission

●     Authentication

Cipher Feedback 
(CFB)

Input is processed j bits at a 
time. Preceding ciphertext is 
used as input to the 
encryption algorithm to 
produce pseudorandom 
output, which is XORed with 
plaintext to produce next 
unit of ciphertext.

●     General-purpose stream-oriented 
transmission

●     Authentication

Output Feedback 
(OFB)

Similar to CFB, except that 
the input to the encryption 
algorithm is the preceding 
DES output.

●     Stream-oriented transmission over noisy 
channel (e.g., satellite communication)

Counter (CTR) Each block of plaintext is 
XORed with an encrypted 
counter. The counter is 
incremented for each 
subsequent block.

●     General-purpose block-oriented 
transmission

●     Useful for high-speed requirements
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Electronic Codebook Mode

The simplest mode is the electronic codebook (ECB) mode, in which plaintext is handled one block at a 
time and each block of plaintext is encrypted using the same key (Figure 6.3). The term codebook is 
used because, for a given key, there is a unique ciphertext for every b-bit block of plaintext. Therefore, 
we can imagine a gigantic codebook in which there is an entry for every possible b-bit plaintext pattern 
showing its corresponding ciphertext.

[Page 182]

Figure 6.3. Electronic Codebook (ECB) Mode

[View full size image]

 
For a message longer than b bits, the procedure is simply to break the message into b-bit blocks, 
padding the last block if necessary. Decryption is performed one block at a time, always using the same 
key. In Figure 6.3, the plaintext (padded as necessary) consists of a sequence of b-bit blocks, P1, P2,..., 

PN; the corresponding sequence of ciphertext blocks is C1, C2,..., CN.

The ECB method is ideal for a short amount of data, such as an encryption key. Thus, if you want to 
transmit a DES key securely, ECB is the appropriate mode to use.

The most significant characteristic of ECB is that the same b-bit block of plaintext, if it appears more 
than once in the message, always produces the same ciphertext.
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For lengthy messages, the ECB mode may not be secure. If the message is highly structured, it may be 
possible for a cryptanalyst to exploit these regularities. For example, if it is known that the message 
always starts out with certain predefined fields, then the cryptanalyst may have a number of known 
plaintext-ciphertext pairs to work with. If the message has repetitive elements, with a period of 
repetition a multiple of b bits, then these elements can be identified by the analyst. This may help in the 
analysis or may provide an opportunity for substituting or rearranging blocks.

[Page 183]

Cipher Block Chaining Mode

To overcome the security deficiencies of ECB, we would like a technique in which the same plaintext 
block, if repeated, produces different ciphertext blocks. A simple way to satisfy this requirement is the 
cipher block chaining (CBC) mode (Figure 6.4). In this scheme, the input to the encryption algorithm is 
the XOR of the current plaintext block and the preceding ciphertext block; the same key is used for each 
block. In effect, we have chained together the processing of the sequence of plaintext blocks. The input 
to the encryption function for each plaintext block bears no fixed relationship to the plaintext block. 
Therefore, repeating patterns of b bits are not exposed.

Figure 6.4. Cipher Block Chaining (CBC) Mode

[View full size image]

 
For decryption, each cipher block is passed through the decryption algorithm. The result is XORed with 
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the preceding ciphertext block to produce the plaintext block. To see that this works, we can write

Cj = E(K, [C
j-1

  Pj])

Then

D(K, Cj) = D(K, E(K, [C
j-1

  Pj]))

D(K, Cj) = C
j-1

  Pj

C
j-1

  D(K, Cj) = C
j-1

  C
j-1

  Pj = Pj

[Page 184]

To produce the first block of ciphertext, an initialization vector (IV) is XORed with the first block of 
plaintext. On decryption, the IV is XORed with the output of the decryption algorithm to recover the first 
block of plaintext. The IV is a data block that is that same size as the cipher block.

The IV must be known to both the sender and receiver but be unpredictable by a third party. For 
maximum security, the IV should be protected against unauthorized changes. This could be done by 
sending the IV using ECB encryption. One reason for protecting the IV is as follows: If an opponent is 
able to fool the receiver into using a different value for IV, then the opponent is able to invert selected 
bits in the first block of plaintext. To see this, consider the following:

C1 = E(K, [IV  P1])

P1 = IV  D(K, C1)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then

P1[i] = IV[i]  D(K, C1)[i]

Then, using the properties of XOR, we can state

P1[i]' = IV[i]'  D(K, C1)[i]

where the prime notation denotes bit complementation. This means that if an opponent can predictably 
change bits in IV, the corresponding bits of the received value of P1 can be changed.

For other possible attacks based on knowledge of IV, see [VOYD83].
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In conclusion, because of the chaining mechanism of CBC, it is an appropriate mode for encrypting 
messages of length greater than b bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for authentication. This use is 
described in Part Two.

Cipher Feedback Mode

The DES scheme is essentially a block cipher technique that uses b-bit blocks. However, it is possible to 
convert DES into a stream cipher, using either the cipher feedback (CFB) or the output feedback mode. 
A stream cipher eliminates the need to pad a message to be an integral number of blocks. It also can 
operate in real time. Thus, if a character stream is being transmitted, each character can be encrypted 
and transmitted immediately using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same length as the plaintext. 
Thus, if 8-bit characters are being transmitted, each character should be encrypted to produce a cipher 
text output of 8 bits. If more than 8 bits are produced, transmission capacity is wasted.

Figure 6.5 depicts the CFB scheme. In the figure, it is assumed that the unit of transmission is s bits; a 
common value is s = 8. As with CBC, the units of plaintext are chained together, so that the ciphertext 
of any plaintext unit is a function of all the preceding plaintext. In this case, rather than units of b bits, 
the plaintext is divided into segments of s bits.

[Page 185]

Figure 6.5. s-bit Cipher Feedback (CFB) Mode

[View full size image]
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First, consider encryption. The input to the encryption function is a b-bit shift register that is initially set 
to some initialization vector (IV). The leftmost (most significant) s bits of the output of the encryption 
function are XORed with the first segment of plaintext P1 to produce the first unit of ciphertext C1, which 

is then transmitted. In addition, the contents of the shift register are shifted left by s bits and C1 is 

placed in the rightmost (least significant) s bits of the shift register. This process continues until all 
plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext unit is XORed with the 
output of the encryption function to produce the plaintext unit. Note that it is the encryption function 
that is used, not the decryption function. This is easily explained. Let Ss(X) be defined as the most 

significant s bits of X. Then

C1 = P1  Ss[E(K, IV)]

Therefore,

P1 = C1  Ss[E(K, IV)]
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The same reasoning holds for subsequent steps in the process.

Output Feedback Mode

The output feedback (OFB) mode is similar in structure to that of CFB, as illustrated in Figure 6.6. As 
can be seen, it is the output of the encryption function that is fed back to the shift register in OFB, 
whereas in CFB the ciphertext unit is fed back to the shift register.

Figure 6.6. s-bit Output Feedback (OFB) Mode

(This item is displayed on page 187 in the print version) 

[View full size image]

 
One advantage of the OFB method is that bit errors in transmission do not propagate. For example, if a 
bit error occurs in C1 only the recovered value of is P1 affected; subsequent plaintext units are not 

corrupted. With CFB, C1 also serves as input to the shift register and therefore causes additional 

corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream modification attack than is 
CFB. Consider that complementing a bit in the ciphertext complements the corresponding bit in the 
recovered plaintext. Thus, controlled changes to the recovered plaintext can be made. This may make it 
possible for an opponent, by making the necessary changes to the checksum portion of the message as 
well as to the data portion, to alter the ciphertext in such a way that it is not detected by an error-
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correcting code. For a further discussion, see [VOYD83].

Counter Mode

Although interest in the counter mode (CTR) has increased recently, with applications to ATM 
(asynchronous transfer mode) network security and IPSec (IP security), this mode was proposed early 
on (e.g., [DIFF79]).

Figure 6.7 depicts the CTR mode. A counter, equal to the plaintext block size is used. The only 
requirement stated in SP 800-38A is that the counter value must be different for each plaintext block 
that is encrypted. Typically, the counter is initialized to some value and then incremented by 1 for each 

subsequent block (modulo 2b where b is the block size). For encryption, the counter is encrypted and 
then XORed with the plaintext block to produce the ciphertext block; there is no chaining. For 
decryption, the same sequence of counter values is used, with each encrypted counter XORed with a 
ciphertext block to recover the corresponding plaintext block.

[Page 188]

Figure 6.7. Counter (CTR) Mode

[View full size image]

 
[LIPM00] lists the following advantages of CTR mode:
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●     Hardware efficiency: Unlike the three chaining modes, encryption (or decryption) in CTR mode 
can be done in parallel on multiple blocks of plaintext or ciphertext. For the chaining modes, the 
algorithm must complete the computation on one block before beginning on the next block. This 
limits the maximum throughput of the algorithm to the reciprocal of the time for one execution of 
block encryption or decryption. In CTR mode, the throughput is only limited by the amount of 
parallelism that is achieved.

●     Software efficiency: Similarly, because of the opportunities for parallel execution in CTR mode, 
processors that support parallel features, such as aggressive pipelining, multiple instruction 
dispatch per clock cycle, a large number of registers, and SIMD instructions, can be effectively 
utilized.

●     Preprocessing: The execution of the underlying encryption algorithm does not depend on input 
of the plaintext or ciphertext. Therefore, if sufficient memory is available and security is 
maintained, preprocessing can be used to prepare the output of the encryption boxes that feed 
into the XOR functions in Figure 6.7. When the plaintext or ciphertext input is presented, then 
the only computation is a series of XORs. Such a strategy greatly enhances throughput.

[Page 189]
●     Random access: The ith block of plaintext or ciphertext can be processed in random-access 

fashion. With the chaining modes, block Ci cannot be computed until the i - 1 prior block are 

computed. There may be applications in which a ciphertext is stored and it is desired to decrypt 
just one block; for such applications, the random access feature is attractive.

●     Provable security: It can be shown that CTR is at least as secure as the other modes discussed 
in this section.

●     Simplicity: Unlike ECB and CBC modes, CTR mode requires only the implementation of the 
encryption algorithm and not the decryption algorithm. This matters most when the decryption 
algorithm differs substantially from the encryption algorithm, as it does for AES. In addition, the 
decryption key scheduling need not be implemented.
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[Page 189 (continued)]

6.3. Stream Ciphers and RC4

In this section we look at perhaps the most popular symmetric stream cipher, RC4. We begin with an 
overview of stream cipher structure, and then examine RC4.

Stream Cipher Structure

A typical stream cipher encrypts plaintext one byte at a time, although a stream cipher may be designed 
to operate on one bit at a time or on units larger than a byte at a time. Figure 6.8 is a representative 
diagram of stream cipher structure. In this structure a key is input to a pseudorandom bit generator that 
produces a stream of 8-bit numbers that are apparently random. We discuss pseudorandom number 
generators in Chapter 7. For now, we simply say that a pseudorandom stream is one that is 
unpredictable without knowledge of the input key. The output of the generator, called a keystream, is 
combined one byte at a time with the plaintext stream using the bitwise exclusive-OR (XOR) operation. 
For example, if the next byte generated by the generator is 01101100 and the next plaintext byte is 
11001100, then the resulting ciphertext byte is

[Page 190]

 
Decryption requires the use of the same pseudorandom sequence:

 
Figure 6.8. Stream Cipher Diagram

(This item is displayed on page 189 in the print version) 

[View full size image]
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The stream cipher is similar to the one-time pad discussed in Chapter 2. The difference is that a one-
time pad uses a genuine random number stream, whereas a stream cipher uses a pseudorandom 
number stream.

[KUMA97] lists the following important design considerations for a stream cipher:

1.  

The encryption sequence should have a large period. A pseudorandom number generator uses a 
function that produces a deterministic stream of bits that eventually repeats. The longer the 
period of repeat the more difficult it will be to do cryptanalysis. This is essentially the same 
consideration that was discussed with reference to the Vigenère cipher, namely that the longer 
the keyword the more difficult the cryptanalysis.

2.  

The keystream should approximate the properties of a true random number stream as close as 
possible. For example, there should be an approximately equal number of 1s and 0s. If the 
keystream is treated as a stream of bytes, then all of the 256 possible byte values should appear 
approximately equally often. The more random-appearing the keystream is, the more 
randomized the ciphertext is, making cryptanalysis more difficult.

3.  

Note from Figure 6.8 that the output of the pseudorandom number generator is conditioned on 
the value of the input key. To guard against brute-force attacks, the key needs to be sufficiently 
long. The same considerations as apply for block ciphers are valid here. Thus, with current 
technology, a key length of at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher can be as secure as block 
cipher of comparable key length. The primary advantage of a stream cipher is that stream ciphers are 
almost always faster and use far less code than do block ciphers. The example in this section, RC4, can 
be implemented in just a few lines of code. Table 6.2, using data from [RESC01], compares execution 
times of RC4 with three well-known symmetric block ciphers. The advantage of a block cipher is that 
you can reuse keys. However, if two plaintexts are encrypted with the same key using a stream cipher, 
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then cryptanalysis is often quite simple [DAWS96]. If the two ciphertext streams are XORed together, 
the result is the XOR of the original plaintexts. If the plaintexts are text strings, credit card numbers, or 
other byte streams with known properties, then cryptanalysis may be successful.

[Page 191]

Table 6.2. Speed Comparisons 
of Symmetric Ciphers on a 

Pentium II

Cipher Key Length Speed (Mbps)

DES 56 9

3DES 168 3

RC2 variable 0.9

RC4 variable 45

 
For applications that require encryption/decryption of a stream of data, such as over a data 
communications channel or a browser/Web link, a stream cipher might be the better alternative. For 
applications that deal with blocks of data, such as file transfer, e-mail, and database, block ciphers may 
be more appropriate. However, either type of cipher can be used in virtually any application.

The RC4 Algorithm

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a variable key-size stream 
cipher with byte-oriented operations. The algorithm is based on the use of a random permutation. 
Analysis shows that the period of the cipher is overwhelmingly likely to be greater than 10100 
[ROBS95a]. Eight to sixteen machine operations are required per output byte, and the cipher can be 
expected to run very quickly in software. RC4 is used in the SSL/TLS (Secure Sockets Layer/Transport 
Layer Security) standards that have been defined for communication between Web browsers and 
servers. It is also used in the WEP (Wired Equivalent Privacy) protocol and the newer WiFi Protected 
Access (WPA) protocol that are part of the IEEE 802.11 wireless LAN standard. RC4 was kept as a trade 
secret by RSA Security. In September 1994, the RC4 algorithm was anonymously posted on the Internet 
on the Cypherpunks anonymous remailers list.

The RC4 algorithm is remarkably simply and quite easy to explain. A variable-length key of from 1 to 
256 bytes (8 to 2048 bits) is used to initialize a 256-byte state vector S, with elements S[0], S[1],..., S
[255]. At all times, S contains a permutation of all 8-bit numbers from 0 through 255. For encryption 
and decryption, a byte k (see Figure 6.8) is generated from S by selecting one of the 255 entries in a 
systematic fashion. As each value of k is generated, the entries in S are once again permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascending order; that is; S
[0] = 0, S[1] = 1,..., S[255] = 255. A temporary vector, T, is also created. If the length of the key K is 
256 bytes, then K is transferred to T. Otherwise, for a key of length keylen bytes, the first keylen 
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elements of T are copied from K and then K is repeated as many times as necessary to fill out T. These 
preliminary operations can be summarized as follows:

[Page 192]

/* Initialization */
for  i = 0 to 255 do
S[i] = i;
T[i] = K[i mod keylen];

 
Next we use T to produce the initial permutation of S. This involves starting with S[0] and going through 
to S[255], and, for each S[i], swapping S[i] with another byte in S according to a scheme dictated by T
[i]:

/* Initial Permutation of S */
j = 0;
for  i = 0 to 255 do
  j = (j + S[i] + T[i]) mod 256;
  Swap (S[i], S[j]);

 
Because the only operation on S is a swap, the only effect is a permutation. S still contains all the 
numbers from 0 through 255.

Stream Generation

Once the S vector is initialized, the input key is no longer used. Stream generation involves cycling 
through all the elements of S[i], and, for each S[i], swapping S[i] with another byte in S according to a 
scheme dictated by the current configuration of S. After S[255] is reached, the process continues, 
starting over again at S[0]:

/* Stream Generation */
i, j = 0;
while (true)
  i = (i + 1) mod 256;
  j = (j + S[i]) mod 256;
  Swap (S[i], S[j]);
  t = (S[i] + S[j]) mod 256;
  k = S[t];

 
To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR the value k with the next 
byte of ciphertext.

Figure 6.9 illustrates the RC4 logic.

Figure 6.9. RC4

(This item is displayed on page 193 in the print version) 
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[View full size image]

 
Strength of RC4

A number of papers have been published analyzing methods of attacking RC4 [e.g., [KNUD98], 
[MIST98], [FLUH00], [MANT01]). None of these approaches is practical against RC4 with a reasonable 
key length, such as 128 bits. A more serious problem is reported in [FLUH01]. The authors demonstrate 
that the WEP protocol, intended to provide confidentiality on 802.11 wireless LAN networks, is 
vulnerable to a particular attack approach. In essence, the problem is not with RC4 itself but the way in 
which keys are generated for use as input to RC4. This particular problem does not appear to be 
relevant to other applications using RC4 and can be remedied in WEP by changing the way in which keys 
are generated. This problem points out the difficulty in designing a secure system that involves both 
cryptographic functions and protocols that make use of them.

[Page 194]
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6.4. Recommended Reading and Web Site

[SCHN96] provides details on numerous symmetric block ciphers as well as some stream ciphers. 
[ROBS95b] is an interesting and worthwhile examination of many design issues related to symmetric 
block ciphers.

[KUMA97] contains an excellent and lengthy discussion of stream cipher design principles. Another good 
treatment, quite mathematical, is [RUEP92]. [ROBS95a] is an interesting and worthwhile examination of 
many design issues related to stream ciphers.

KUMA97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

ROBS95a Robshaw, M. Stream Ciphers. RSA Laboratories Technical Report TR-701, 
July 1995. http://www.rsasecurity.com/rsalabs

ROBS95b Robshaw, M. Block Ciphers. RSA Laboratories Technical Report TR-601, 
August 1995. http://www.rsasecurity.com/rsalabs

RUEP92 Rueppel, T. "Stream Ciphers." In [SIMM92].

SCHN96 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMM92 Simmons, G., ed. Contemporary Cryptology: The Science of Information 
Integrity. Piscataway, NJ: IEEE Press, 1992.

 
Recommended Web Site

●     Block cipher modes of operation: NIST page with full information on NIST-approved modes of 
operation
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6.5. Key Terms, Review Questions, and Problems

Key Terms

Block cipher modes of operation

cipher block chaining mode (CBC)

cipher feedback mode (CFB)

meet-in-the-middle attack

counter mode (CTR)

electronic codebook mode (ECB)

output feedback mode (OFB)

RC4

stream cipher

Triple DES (3DES)

[Page 195]

Review Questions

6.1 What is triple encryption?

6.2 What is a meet-in-the-middle attack?

6.3 How many keys are used in triple encryption?

6.4 Why is the middle portion of 3DES a decryption rather than an encryption?

6.5 List important design considerations for a stream cipher.

6.6 Why is it not desirable to reuse a stream cipher key?
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6.7 What primitive operations are used in RC4?

6.8 Why do some block cipher modes of operation only use encryption while others use both 
encryption and decryption?

Problems

6.1 You want to build a hardware device to do block encryption in the cipher block chaining (CBC) 
mode using an algorithm stronger than DES. 3DES is a good candidate. Figure 6.10 shows two 
possibilities, both of which follow from the definition of CBC. Which of the two would you choose:

a.  

For security?

b.  

For performance?

Figure 6.10. Use of Triple DES in CBC Mode
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[Page 196]

6.2 Can you suggest a security improvement to either option in Figure 6.10, using only three DES 
chips and some number of XOR functions? Assume you are still limited to two keys.

6.3 The Merkle-Hellman attack on 3DES begins by assuming a value A = 0 of (Figure 6.1b). Then, for 
each of the 256 possible values of K1, the plaintext P that produces A = 0 is determined. Describe 

the rest of the algorithm.

6.4 With the ECB mode of DES, if there is an error in a block of the transmitted ciphertext, only the 
corresponding plaintext block is affected. However, in the CBC mode, this error propagates. For 
example, an error in the transmitted C1 (Figure 6.4) obviously corrupts P1 and P2.

a.  

Are any blocks beyond P2 affected?

b.  

Suppose that there is a bit error in the source version of P1. Through how many ciphertext 

blocks is this error propagated? What is the effect at the receiver?

6.5 If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode, how far does 
the error propagate?
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6.6 Fill in the remainder of this table:

Mode Encrypt Decrypt

ECB Cj = E(K, Pj) j = 1,...,N Pj = D(K, Cj) j = 1,..., N

CBC
C1 = E(K, [P1  IV])

Cj = E(K, [Pj  C
j-1

]) j = 2,..., N

P1 = D(K, C1)  IV

Pj = D(K, Cj)  C
j-1

 j = 2,..., N

CFB   

OFB   

CTR   

 

6.7 CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it could be used in 
any block cipher. CBC-Pad handles plaintext of any length. The ciphertext is longer then the 
plaintext by at most the size of a single block. Padding is used to assure that the plaintext input is 
a multiple of the block length. It is assumed that the original plaintext is an integer number of 
bytes. This plaintext is padded at the end by from 1 to bb bytes, where bb equals the block size in 
bytes. The pad bytes are all the same and set to a byte that represents the number of bytes of 
padding. For example, if there are 8 bytes of padding, each byte has the bit pattern 00001000. 
Why not allow zero bytes of padding? That is, if the original plaintext is an integer multiple of the 
block size, why not refrain from padding?

6.8 Padding may not always be appropriate. For example, one might wish to store the encrypted data 
in the same memory buffer that originally contained the plaintext. In that case, the ciphertext 
must be the same length as the original plaintext. A mode for that purpose is the ciphertext 
stealing (CTS) mode. Figure 6.11a shows an implementation of this mode.

a.  

Explain how it works.

b.  

Describe how to decrypt C
n-1 and Cn
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6.9 Figure 6.11b shows an alternative to CTS for producing ciphertext of equal length to the plaintext 
when the plaintext is not an integer multiple of the block size.

a.  

Explain the algorithm.

b.  

Explain why CTS is preferable to this approach illustrated in Figure 6.11b.

Figure 6.11. Block Cipher Modes for Plaintext not a Multiple of Block 
Size

(This item is displayed on page 197 in the print version) 

[View full size image]

6.10 What RC4 key value will leave S unchanged during initialization? That is, after the initial 
permutation of S, the entries of S will be equal to the values from 0 through 255 in ascending 
order.

[Page 197]
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6.11 RC4 has a secret internal state which is a permutation of all the possible values of the vector S 
and the two indices i and j.

a.  

Using a straightforward scheme to store the internal state, how many bits are used?

b.  

Suppose we think of it from the point of view of how much information is represented by 
the state. In that case, we need to determine how may different states there are, than 
take the log to the base 2 to find out how many bits of information this represents. Using 
this approach, how many bits would be needed to represent the state?

6.12 Alice and Bob agree to communicate privately via email using a scheme based on RC4, but want 
to avoid using a new secret key for each transmission. Alice and Bob privately agree on a 128-bit 
key k. To encrypt a message m, consisting of a string of bits, the following procedure is used:

1.  

Choose a random 80-bit value v

2.  

Generate the ciphertext c = RC4(v || k)  m

3.  

Send the bit string (v || C)

a.  

Suppose Alice uses this procedure to send a message m to Bob. Describe how Bob can 
recover the message m from (v || C) using k.

b.  

If an adversary observes several values (v1 || C1), (v2 || C2), ... transmitted between Alice 

and Bob, how can he/she determine when the same key stream has been used to encrypt 
two messages?

[Page 198]
c.  

Approximately how many messages can Alice expect to send before the same key stream 
will be used twice? Use the result from the birthday paradox described in Appendix 11A 
[Equation (11.7)].

d.  

What does this imply about the lifetime of the key k (i.e., the number of messages that 
can be encrypted using k)?
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Programming Problems

6.13 Create software that can encrypt and decrypt in Cipher Block Chaining mode using one of the 
following ciphers: affine modulo 256, Hill modulo 256, S-DES, DES. Test data for S-DES: using a 
binary initialization vector of 1010 1010, a binary plaintext of 0000 0001 0010 0011 encrypted 
with a binary key of 01111 11101 should give a binary plaintext of 1111 0100 0000 1011. 
Decryption should work correspondingly.

6.14 Create software that can encrypt and decrypt in 4-bit Cipher Feedback mode using one of the 
following ciphers: additive modulo 256, affine modulo 256, S-DES;

or

8-bit Cipher Feedback mode using one of the following ciphers: 2 x 2 Hill modulo 256. Test data 
for S-DES: using a binary initialization vector of 1010 1011, a binary plaintext of 0001 0010 0011 
0100 encrypted with a binary key of 01111 11101 should give a binary plaintext of 1110 1100 
1111 1010. Decryption should work correspondingly.

6.15 Create software that can encrypt and decrypt in 4-bit Output Feedback mode using one of the 
following ciphers: additive modulo 256, affine modulo 256, S-DES;

or

8-bit Output Feedback mode using one of the following ciphers: 2 x 2 Hill modulo 256,

6.16 Create software that can encrypt and decrypt in Counter mode using one of the following ciphers: 
affine modulo 256, Hill modulo 256, S-DES.

Test data for S-DES: using a counter starting at 0000 0000, a binary plaintext of 0000 0001 0000 
0010 0000 0100 encrypted with a binary key of 01111 11101 should give a binary plaintext of 
0011 1000 0100 1111 0011 0010. Decryption should work correspondingly.

6.17 Implement a differential cryptanalysis attack on 3-round S-DES.
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Chapter 7. Confidentiality Using Symmetric Encryption
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Link Encryption Approach

End-to-End Encryption Approach

7.3 Key Distribution

A Key Distribution Scenario

Hierarchical Key Control
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Decentralized Key Control

Controlling Key Usage

7.4 Random Number Generation
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Amongst the tribes of Central Australia every man, woman, and child has a secret or 
sacred name which is bestowed by the older men upon him or her soon after birth, and 
which is known to none but the fully initiated members of the group. This secret name is 
never mentioned except upon the most solemn occasions; to utter it in the hearing of 
men of another group would be a most serious breach of tribal custom. When mentioned 
at all, the name is spoken only in a whisper, and not until the most elaborate precautions 
have been taken that it shall be heard by no one but members of the group. The native 
thinks that a stranger knowing his secret name would have special power to work him ill 
by means of magic.

The Golden Bough, Sir James George Frazer

John wrote the letters of the alphabet under the letters in its first lines and tried it against 
the message. Immediately he knew that once more he had broken the code. It was 
extraordinary the feeling of triumph he had. He felt on top of the world. For not only had 
he done it, had he broken the July code, but he now had the key to every future coded 
message, since instructions as to the source of the next one must of necessity appear in 
the current one at the end of each month.

Talking to Strange Men, Ruth Rendell
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Key Points

●     In a distributed environment, encryption devices can be placed to support either 
link encryption or end-to-end encryption. With link encryption, each vulnerable 
communications link is equipped on both ends with an encryption device. With end-
to-end encryption, the encryption process is carried out at the two end systems.

●     Even if all traffic between users is encrypted, a traffic analysis may yield information 
of value to an opponent. An effective countermeasure is traffic padding, which 
involves sending random bits during periods when no encrypted data are available 
for transmission.

●     Key distribution is the function that delivers a key to two parties who wish to 
exchange secure encrypted data. Some sort of mechanism or protocol is needed to 
provide for the secure distribution of keys.

●     Key distribution often involves the use of master keys, which are infrequently used 
and are long lasting, and session keys, which are generated and distributed for 
temporary use between two parties.

●     A capability with application to a number of cryptographic functions is random or 
pseudorandom number generation. The principle requirement for this capability is 
that the generated number stream be unpredictable.

 

[Page 201]

Historically, the focus of cryptology has been on the use of symmetric encryption to provide 
confidentiality. It is only in the last several decades that other considerations, such as authentication, 
integrity, digital signatures, and the use of public-key encryption, have been included in the theory and 
practice of cryptology.

Before examining some of these more recent topics, we concentrate in this chapter on the use of 
symmetric encryption to provide confidentiality. This topic remains important in itself. In addition, an 
understanding of the issues involved here helps to motivate the development of public-key encryption 
and clarifies the issues involved in other applications of encryption, such as authentication.

We begin with a discussion of the location of encryption logic; the main choice here is between what are 
known as link encryption and end-to-end encryption. Next, we look at the use of encryption to counter 
traffic analysis attacks. Then we discuss the difficult problem of key distribution. Finally, we discuss the 
principles underlying an important tool in providing a confidentiality facility: random number generation.
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7.1. Placement of Encryption Function

If encryption is to be used to counter attacks on confidentiality, we need to decide what to encrypt and 
where the encryption function should be located. To begin, this section examines the potential locations 
of security attacks and then looks at the two major approaches to encryption placement: link and end to 
end.

Potential Locations for Confidentiality Attacks

As an example, consider a user workstation in a typical business organization. Figure 7.1 suggests the 
types of communications facilities that might be employed by such a workstation and therefore gives an 
indication of the points of vulnerability.

Figure 7.1. Points of Vulnerability
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In most organizations, workstations are attached to local area networks (LANs). Typically, the user can 
reach other workstations, hosts, and servers directly on the LAN or on other LANs in the same building 
that are interconnected with bridges and routers. Here, then, is the first point of vulnerability. In this 
case, the main concern is eavesdropping by another employee. Typically, a LAN is a broadcast network: 
Transmission from any station to any other station is visible on the LAN medium to all stations. Data are 
transmitted in the form of frames, with each frame containing the source and destination address. An 
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eavesdropper can monitor the traffic on the LAN and capture any traffic desired on the basis of source 
and destination addresses. If part or all of the LAN is wireless, then the potential for eavesdropping is 
greater.

Furthermore, the eavesdropper need not necessarily be an employee in the building. If the LAN, through 
a communications server or one of the hosts on the LAN, offers a dial-in capability, then it is possible for 
an intruder to gain access to the LAN and monitor traffic.

Access to the outside world from the LAN is almost always available in the form of a router that connects 
to the Internet, a bank of dial-out modems, or some other type of communications server. From the 
communications server, there is a line leading to a wiring closet. The wiring closet serves as a patch 
panel for interconnecting internal data and phone lines and for providing a staging point for external 
communications.

The wiring closet itself is vulnerable. If an intruder can penetrate to the closet, he or she can tap into 
each wire to determine which are used for data transmission. After isolating one or more lines, the 
intruder can attach a low-power radio transmitter. The resulting signals can be picked up from a nearby 
location (e.g., a parked van or a nearby building).

Several routes out of the wiring closet are possible. A standard configuration provides access to the 
nearest central office of the local telephone company. Wires in the closet are gathered into a cable, 
which is usually consolidated with other cables in the basement of the building. From there, a larger 
cable runs underground to the central office.

In addition, the wiring closet may provide a link to a microwave antenna, either an earth station for a 
satellite link or a point-to-point terrestrial microwave link. The antenna link can be part of a private 
network, or it can be a local bypass to hook in to a long-distance carrier.

The wiring closet may also provide a link to a node of a packet-switching network. This link can be a 
leased line, a direct private line, or a switched connection through a public telecommunications network. 
Inside the network, data pass through a number of nodes and links between nodes until the data arrive 
at the node to which the destination end system is connected.

An attack can take place on any of the communications links. For active attacks, the attacker needs to 
gain physical control of a portion of the link and be able to insert and capture transmissions. For a 
passive attack, the attacker merely needs to be able to observe transmissions. The communications 
links involved can be cable (telephone twisted pair, coaxial cable, or optical fiber), microwave links, or 
satellite channels. Twisted pair and coaxial cable can be attacked using either invasive taps or inductive 
devices that monitor electromagnetic emanations. Invasive taps allow both active and passive attacks, 
whereas inductive taps are useful for passive attacks. Neither type of tap is as effective with optical 
fiber, which is one of the advantages of this medium. The fiber does not generate electromagnetic 
emanations and hence is not vulnerable to inductive taps. Physically breaking the cable seriously 
degrades signal quality and is therefore detectable. Microwave and satellite transmissions can be 
intercepted with little risk to the attacker. This is especially true of satellite transmissions, which cover a 
broad geographic area. Active attacks on microwave and satellite are also possible, although they are 
more difficult technically and can be quite expensive.
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In addition to the potential vulnerability of the various communications links, the various processors 
along the path are themselves subject to attack. An attack can take the form of attempts to modify the 
hardware or software, to gain access to the memory of the processor, or to monitor the electromagnetic 
emanations. These attacks are less likely than those involving communications links but are 
nevertheless a source of risk.
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Thus, there are a large number of locations at which an attack can occur. Furthermore, for wide area 
communications, many of these locations are not under the physical control of the end user. Even in the 
case of local area networks, in which physical security measures are possible, there is always the threat 
of the disgruntled employee.

Link versus End-to-End Encryption

The most powerful and most common approach to securing the points of vulnerability highlighted in the 
preceding section is encryption. If encryption is to be used to counter these attacks, then we need to 
decide what to encrypt and where the encryption gear should be located. As Figure 7.2 indicates, there 
are two fundamental alternatives: link encryption and end-to-end encryption.

Figure 7.2. Encryption Across a Packet-Switching Network

(This item is displayed on page 204 in the print version) 

[View full size image]

 
Basic Approaches

With link encryption, each vulnerable communications link is equipped on both ends with an encryption 
device. Thus, all traffic over all communications links is secured. Although this recourse requires a lot of 
encryption devices in a large network, its value is clear. One of its disadvantages is that the message 
must be decrypted each time it enters a switch (such as a frame relay switch) because the switch must 
read the address (logical connection number) in the packet header in order to route the frame. Thus, 
the message is vulnerable at each switch. If working with a public network, the user has no control over 
the security of the nodes.

Several implications of link encryption should be noted. For this strategy to be effective, all the potential 
links in a path from source to destination must use link encryption. Each pair of nodes that share a link 
should share a unique key, with a different key used on each link. Thus, many keys must be provided.
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With end-to-end encryption, the encryption process is carried out at the two end systems. The source 
host or terminal encrypts the data. The data in encrypted form are then transmitted unaltered across 
the network to the destination terminal or host. The destination shares a key with the source and so is 
able to decrypt the data. This plan seems to secure the transmission against attacks on the network 
links or switches. Thus, end-to-end encryption relieves the end user of concerns about the degree of 
security of networks and links that support the communication. There is, however, still a weak spot.

Consider the following situation. A host connects to a frame relay or ATM network, sets up a logical 
connection to another host, and is prepared to transfer data to that other host by using end-to-end 
encryption. Data are transmitted over such a network in the form of packets that consist of a header 
and some user data. What part of each packet will the host encrypt? Suppose that the host encrypts the 
entire packet, including the header. This will not work because, remember, only the other host can 
perform the decryption. The frame relay or ATM switch will receive an encrypted packet and be unable 
to read the header. Therefore, it will not be able to route the packet. It follows that the host may 
encrypt only the user data portion of the packet and must leave the header in the clear.

[Page 205]

Thus, with end-to-end encryption, the user data are secure. However, the traffic pattern is not, because 
packet headers are transmitted in the clear. On the other hand, end-to-end encryption does provide a 
degree of authentication. If two end systems share an encryption key, then a recipient is assured that 
any message that it receives comes from the alleged sender, because only that sender shares the 
relevant key. Such authentication is not inherent in a link encryption scheme.

To achieve greater security, both link and end-to-end encryption are needed, as is shown in Figure 7.2. 
When both forms of encryption are employed, the host encrypts the user data portion of a packet using 
an end-to-end encryption key. The entire packet is then encrypted using a link encryption key. As the 
packet traverses the network, each switch decrypts the packet, using a link encryption key to read the 
header, and then encrypts the entire packet again for sending it out on the next link. Now the entire 
packet is secure except for the time that the packet is actually in the memory of a packet switch, at 
which time the packet header is in the clear.

Table 7.1 summarizes the key characteristics of the two encryption strategies.

Table 7.1. Characteristics of Link and End-to-End Encryption [PFLE02]

Link Encryption End-to-End Encryption

Security within End Systems and Intermediate Systems

Message exposed in sending host Message encrypted in sending host

Message exposed in intermediate nodes Message encrypted in intermediate nodes

Role of User

Applied by sending host Applied by sending process

Transparent to user User applies encryption
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Host maintains encryption facility User must determine algorithm

One facility for all users Users selects encryption scheme

Can be done in hardware Software implementation

All or no messages encrypted User chooses to encrypt, or not, for each message

Implementation Concerns

Requires one key per (host-intermediate node) 
pair and (intermediate node-intermediate node) 
pair

Requires one key per user pair

Provides host authentication Provides user authentication

 
Logical Placement of End-to-End Encryption Function

With link encryption, the encryption function is performed at a low level of the communications 
hierarchy. In terms of the Open Systems Interconnection (OSI) model, link encryption occurs at either 
the physical or link layers.
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For end-to-end encryption, several choices are possible for the logical placement of the encryption 
function. At the lowest practical level, the encryption function could be performed at the network layer. 
Thus, for example, encryption could be associated with the frame relay or ATM protocol, so that the user 
data portion of all frames or ATM cells is encrypted.

With network-layer encryption, the number of identifiable and separately protected entities corresponds 
to the number of end systems in the network. Each end system can engage in an encrypted exchange 
with another end system if the two share a secret key. All the user processes and applications within 
each end system would employ the same encryption scheme with the same key to reach a particular 
target end system. With this arrangement, it might be desirable to off-load the encryption function to 
some sort of front-end processor (typically a communications board in the end system).

Figure 7.3 shows the encryption function of the front-end processor (FEP). On the host side, the FEP 
accepts packets. The user data portion of the packet is encrypted, while the packet header bypasses the 

encryption process.
[1]

 The resulting packet is delivered to the network. In the opposite direction, for 
packets arriving from the network, the user data portion is decrypted and the entire packet is delivered 
to the host. If the transport layer functionality (e.g., TCP) is implemented in the front end, then the 
transport-layer header would also be left in the clear and the user data portion of the transport protocol 
data unit is encrypted.

[1] The terms red and black are frequently used. Red data are sensitive or classified data in the clear. Black data are 
encrypted data.

Figure 7.3. Front-End Processor Function

[View full size image]
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Deployment of encryption services on end-to-end protocols, such as a network-layer frame relay or TCP, 
provides end-to-end security for traffic within a fully integrated internetwork. However, such a scheme 
cannot deliver the necessary service for traffic that crosses internetwork boundaries, such as electronic 
mail, electronic data interchange (EDI), and file transfers.

Figure 7.4 illustrates the issues involved. In this example, an electronic mail gateway is used to 
interconnect an internetwork that uses an OSI-based architecture with one that uses a TCP/IP-based 

architecture.
[2]

 In such a configuration, there is no end-to-end protocol below the application layer. The 
transport and network connections from each end system terminate at the mail gateway, which sets up 
new transport and network connections to link to the other end system. Furthermore, such a scenario is 
not limited to the case of a gateway between two different architectures. Even if both end systems use 
TCP/IP or OSI, there are plenty of instances in actual configurations in which mail gateways sit between 
otherwise isolated internetworks. Thus, for applications like electronic mail that have a store-and-
forward capability, the only place to achieve end-to-end encryption is at the application layer.

[2] Appendix H provides a brief overview of the OSI and TCP/IP protocol architectures.
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Figure 7.4. Encryption Coverage Implications of Store-and-Forward 
Communications

[View full size image]
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A drawback of application-layer encryption is that the number of entities to consider increases 
dramatically. A network that supports hundreds of hosts may support thousands of users and processes. 
Thus, many more secret keys need to be generated and distributed.

An interesting way of viewing the alternatives is to note that as we move up the communications 
hierarchy, less information is encrypted but it is more secure. Figure 7.5 highlights this point, using the 
TCP/IP architecture as an example. In the figure, an application-level gateway refers to a store-and-

forward device that operates at the application level.
[3]

[3] Unfortunately, most TCP/IP documents use the term gateway to refer to what is more commonly referred to as a router.
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Figure 7.5. Relationship between Encryption and Protocol Levels

[View full size image]
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With application-level encryption (Figure 7.5a), only the user data portion of a TCP segment is 
encrypted. The TCP, IP, network-level, and link-level headers and link-level trailer are in the clear. By 
contrast, if encryption is performed at the TCP level (Figure 7.5b), then, on a single end-to-end 
connection, the user data and the TCP header are encrypted. The IP header remains in the clear 
because it is needed by routers to route the IP datagram from source to destination. Note, however, 
that if a message passes through a gateway, the TCP connection is terminated and a new transport 
connection is opened for the next hop. Furthermore, the gateway is treated as a destination by the 
underlying IP. Thus, the encrypted portions of the data unit are decrypted at the gateway. If the next 
hop is over a TCP/IP network, then the user data and TCP header are encrypted again before 
transmission. However, in the gateway itself the data unit is buffered entirely in the clear. Finally, for 
link-level encryption (Figure 7.5c), the entire data unit except for the link header and trailer is encrypted 

on each link, but the entire data unit is in the clear at each router and gateway.
[4]

[4] The figure actually shows but one alternative. It is also possible to encrypt part or even all of the link header and trailer 
except for the starting and ending frame flags.
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7.2. Traffic Confidentiality

We mentioned in Chapter 1 that, in some cases, users are concerned about security from traffic 
analysis. Knowledge about the number and length of messages between nodes may enable an opponent 
to determine who is talking to whom. This can have obvious implications in a military conflict. Even in 
commercial applications, traffic analysis may yield information that the traffic generators would like to 
conceal. [MUFT89] lists the following types of information that can be derived from a traffic analysis 
attack:

●     Identities of partners
●     How frequently the partners are communicating
●     Message pattern, message length, or quantity of messages that suggest important information is 

being exchanged
●     The events that correlate with special conversations between particular partners

Another concern related to traffic is the use of traffic patterns to create a covert channel. A covert 
channel is a means of communication in a fashion unintended by the designers of the communications 
facility. Typically, the channel is used to transfer information in a way that violates a security policy. For 
example, an employee may wish to communicate information to an outsider in a way that is not 
detected by management and that requires simple eavesdropping on the part of the outsider. The two 
participants could set up a code in which an apparently legitimate message of a less than a certain 
length represents binary zero, whereas a longer message represents a binary one. Other such schemes 
are possible.

Link Encryption Approach

With the use of link encryption, network-layer headers (e.g., frame or cell header) are encrypted, 
reducing the opportunity for traffic analysis. However, it is still possible in those circumstances for an 
attacker to assess the amount of traffic on a network and to observe the amount of traffic entering and 
leaving each end system. An effective countermeasure to this attack is traffic padding, illustrated in 
Figure 7.6.

Figure 7.6. Traffic-Padding Encryption Device
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Traffic padding produces ciphertext output continuously, even in the absence of plaintext. A continuous 
random data stream is generated. When plaintext is available, it is encrypted and transmitted. When 
input plaintext is not present, random data are encrypted and transmitted. This makes it impossible for 
an attacker to distinguish between true data flow and padding and therefore impossible to deduce the 
amount of traffic.

End-to-End Encryption Approach

Traffic padding is essentially a link encryption function. If only end-to-end encryption is employed, then 
the measures available to the defender are more limited. For example, if encryption is implemented at 
the application layer, then an opponent can determine which transport entities are engaged in dialogue. 
If encryption techniques are housed at the transport layer, then network-layer addresses and traffic 
patterns remain accessible.

One technique that might prove useful is to pad out data units to a uniform length at either the 
transport or application level. In addition, null messages can be inserted randomly into the stream. 
These tactics deny an opponent knowledge about the amount of data exchanged between end users and 
obscure the underlying traffic pattern.
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7.3. Key Distribution

For symmetric encryption to work, the two parties to an exchange must share the same key, and that 
key must be protected from access by others. Furthermore, frequent key changes are usually desirable 
to limit the amount of data compromised if an attacker learns the key. Therefore, the strength of any 
cryptographic system rests with the key distribution technique, a term that refers to the means of 
delivering a key to two parties who wish to exchange data, without allowing others to see the key. For 
two parties A and B, key distribution can be achieved in a number of ways, as follows:

1.  

A can select a key and physically deliver it to B.

2.  

A third party can select the key and physically deliver it to A and B.

3.  

If A and B have previously and recently used a key, one party can transmit the new key to the 
other, encrypted using the old key.

4.  

If A and B each has an encrypted connection to a third party C, C can deliver a key on the 
encrypted links to A and B.

Options 1 and 2 call for manual delivery of a key. For link encryption, this is a reasonable requirement, 
because each link encryption device is going to be exchanging data only with its partner on the other 
end of the link. However, for end-to-end encryption, manual delivery is awkward. In a distributed 
system, any given host or terminal may need to engage in exchanges with many other hosts and 
terminals over time. Thus, each device needs a number of keys supplied dynamically. The problem is 
especially difficult in a wide area distributed system.

The scale of the problem depends on the number of communicating pairs that must be supported. If end-
to-end encryption is done at a network or IP level, then a key is needed for each pair of hosts on the 
network that wish to communicate. Thus, if there are N hosts, the number of required keys is [N(N 
1)]/2. If encryption is done at the application level, then a key is needed for every pair of users or 
processes that require communication. Thus, a network may have hundreds of hosts but thousands of 
users and processes. Figure 7.7 illustrates the magnitude of the key distribution task for end-to-end 

encryption.
[5]

 A network using node-level encryption with 1000 nodes would conceivably need to 
distribute as many as half a million keys. If that same network supported 10,000 applications, then as 
many as 50 million keys may be required for application-level encryption.

[5] Note that this figure uses a log-log scale, so that a linear graph indicates exponential growth. A basic review of log scales is 
in the math refresher document at the Computer Science Student Resource Site at WilliamStallings.com/
StudentSupport.html.
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Figure 7.7. Number of Keys Required to Support Arbitrary Connections 
between Endpoints

[View full size image]

 
Returning to our list, option 3 is a possibility for either link encryption or end-to-end encryption, but if 
an attacker ever succeeds in gaining access to one key, then all subsequent keys will be revealed. 
Furthermore, the initial distribution of potentially millions of keys must still be made.

For end-to-end encryption, some variation on option 4 has been widely adopted. In this scheme, a key 
distribution center is responsible for distributing keys to pairs of users (hosts, processes, applications) 
as needed. Each user must share a unique key with the key distribution center for purposes of key 
distribution.

[Page 212]

The use of a key distribution center is based on the use of a hierarchy of keys. At a minimum, two levels 
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of keys are used (Figure 7.8). Communication between end systems is encrypted using a temporary 
key, often referred to as a session key. Typically, the session key is used for the duration of a logical 
connection, such as a frame relay connection or transport connection, and then discarded. Each session 
key is obtained from the key distribution center over the same networking facilities used for end-user 
communication. Accordingly, session keys are transmitted in encrypted form, using a master key that 
is shared by the key distribution center and an end system or user.

Figure 7.8. The Use of a Key Hierarchy

 
For each end system or user, there is a unique master key that it shares with the key distribution 
center. Of course, these master keys must be distributed in some fashion. However, the scale of the 
problem is vastly reduced. If there are N entities that wish to communicate in pairs, then, as was 
mentioned, as many as [N(N 1)]/2 session keys are needed at any one time. However, only N master 
keys are required, one for each entity. Thus, master keys can be distributed in some noncryptographic 
way, such as physical delivery.

A Key Distribution Scenario

The key distribution concept can be deployed in a number of ways. A typical scenario is illustrated in 
Figure 7.9, which is based on a figure in [POPE79]. The scenario assumes that each user shares a 
unique master key with the key distribution center (KDC).

Figure 7.9. Key Distribution Scenario

(This item is displayed on page 213 in the print version) 
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Let us assume that user A wishes to establish a logical connection with B and requires a one-time 
session key to protect the data transmitted over the connection. A has a master key, Ka, known only to 

itself and the KDC; similarly, B shares the master key Kb with the KDC. The following steps occur:

1. A issues a request to the KDC for a session key to protect a logical connection to B. The message 
includes the identity of A and B and a unique identifier, N1, for this transaction, which we refer to 

as a nonce.
[6]

 The nonce may be a timestamp, a counter, or a random number; the minimum 
requirement is that it differs with each request. Also, to prevent masquerade, it should be difficult 
for an opponent to guess the nonce. Thus, a random number is a good choice for a nonce. 
 

[6] The following definitions are useful in understanding the purpose of the nonce 
component. Nonce: The present or particular occasion. Nonce word: A word 
occurring, invented, or used just for a particular occasion. From the American 
Heritage Dictionary of the English Language, 3rd ed.

[Page 213]
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2. The KDC responds with a message encrypted using Ka Thus, A is the only one who can 

successfully read the message, and A knows that it originated at the KDC. The message includes 
two items intended for A: 
 

●     The one-time session key, Ks, to be used for the session

●     The original request message, including the nonce, to enable A to match this response 
with the appropriate request

Thus, A can verify that its original request was not altered before reception by the KDC and, 
because of the nonce, that this is not a replay of some previous request. 
 
In addition, the message includes two items intended for B: 
 

●     The one-time session key, Ks to be used for the session

●     An identifier of A (e.g., its network address), IDA

These last two items are encrypted with Kb (the master key that the KDC shares with B). They are 

to be sent to B to establish the connection and prove A's identity. 
 

[Page 214]
3. A stores the session key for use in the upcoming session and forwards to B the information that 

originated at the KDC for B, namely, E(Kb, [Ks || IDA]). Because this information is encrypted with 

Kb, it is protected from eavesdropping. B now knows the session key (Ks), knows that the other 

party is A (from IDA), and knows that the information originated at the KDC (because it is 

encrypted using Kb). 

 
At this point, a session key has been securely delivered to A and B, and they may begin their 
protected exchange. However, two additional steps are desirable: 
 

4. Using the newly minted session key for encryption, B sends a nonce, N2, to A. 

 
5. Also using Ks, A responds with f(N2), where f is a function that performs some transformation on 

N2 (e.g., adding one). 

 

These steps assure B that the original message it received (step 3) was not a replay.

Note that the actual key distribution involves only steps 1 through 3 but that steps 4 and 5, as well as 3, 
perform an authentication function.

Hierarchical Key Control

It is not necessary to limit the key distribution function to a single KDC. Indeed, for very large networks, 
it may not be practical to do so. As an alternative, a hierarchy of KDCs can be established. For example, 
there can be local KDCs, each responsible for a small domain of the overall internetwork, such as a 
single LAN or a single building. For communication among entities within the same local domain, the 
local KDC is responsible for key distribution. If two entities in different domains desire a shared key, 
then the corresponding local KDCs can communicate through a global KDC. In this case, any one of the 
three KDCs involved can actually select the key. The hierarchical concept can be extended to three or 
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even more layers, depending on the size of the user population and the geographic scope of the 
internetwork.

A hierarchical scheme minimizes the effort involved in master key distribution, because most master 
keys are those shared by a local KDC with its local entities. Furthermore, such a scheme limits the 
damage of a faulty or subverted KDC to its local area only.

Session Key Lifetime

The more frequently session keys are exchanged, the more secure they are, because the opponent has 
less ciphertext to work with for any given session key. On the other hand, the distribution of session 
keys delays the start of any exchange and places a burden on network capacity. A security manager 
must try to balance these competing considerations in determining the lifetime of a particular session 
key.

For connection-oriented protocols, one obvious choice is to use the same session key for the length of 
time that the connection is open, using a new session key for each new session. If a logical connection 
has a very long lifetime, then it would be prudent to change the session key periodically, perhaps every 
time the PDU (protocol data unit) sequence number cycles.

For a connectionless protocol, such as a transaction-oriented protocol, there is no explicit connection 
initiation or termination. Thus, it is not obvious how often one needs to change the session key. The 
most secure approach is to use a new session key for each exchange. However, this negates one of the 
principal benefits of connectionless protocols, which is minimum overhead and delay for each 
transaction. A better strategy is to use a given session key for a certain fixed period only or for a certain 
number of transactions.

[Page 215]

A Transparent Key Control Scheme

The approach suggested in Figure 7.9 has many variations, one of which is described in this subsection. 
The scheme (Figure 7.10) is useful for providing end-to-end encryption at a network or transport level in 
a way that is transparent to the end users. The approach assumes that communication makes use of a 
connection-oriented end-to-end protocol, such as TCP. The noteworthy element of this approach is a 
session security module (SSM), which may consists of functionality at one protocol layer, that performs 
end-to-end encryption and obtains session keys on behalf of its host or terminal.

Figure 7.10. Automatic Key Distribution for Connection-Oriented Protocol

(This item is displayed on page 216 in the print version) 

[View full size image]

file:///D|/1/0131873164/ch07lev1sec3.html (6 von 10) [14.10.2007 09:40:42]

file:///D|/1/0131873164/images/07fig10_alt.jpg


Section 7.3.  Key Distribution

 
The steps involved in establishing a connection are shown in the figure. When one host wishes to set up 
a connection to another host, it transmits a connection-request packet (step 1). The SSM saves that 
packet and applies to the KDC for permission to establish the connection (step 2). The communication 
between the SSM and the KDC is encrypted using a master key shared only by this SSM and the KDC. If 
the KDC approves the connection request, it generates the session key and delivers it to the two 
appropriate SSMs, using a unique permanent key for each SSM (step 3). The requesting SSM can now 
release the connection request packet, and a connection is set up between the two end systems (step 
4). All user data exchanged between the two end systems are encrypted by their respective SSMs using 
the one-time session key.

The automated key distribution approach provides the flexibility and dynamic characteristics needed to 
allow a number of terminal users to access a number of hosts and for the hosts to exchange data with 
each other.

Decentralized Key Control

The use of a key distribution center imposes the requirement that the KDC be trusted and be protected 
from subversion. This requirement can be avoided if key distribution is fully decentralized. Although full 
decentralization is not practical for larger networks using symmetric encryption only, it may be useful 
within a local context.

A decentralized approach requires that each end system be able to communicate in a secure manner 
with all potential partner end systems for purposes of session key distribution. Thus, there may need to 
be as many as [n(n 1)]/2 master keys for a configuration with n end systems.

A session key may be established with the following sequence of steps (Figure 7.11):

1. A issues a request to B for a session key and includes a nonce, N1 
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2. B responds with a message that is encrypted using the shared master key. The response includes 
the session key selected by B, an identifier of B, the value f(N1), and another nonce, N2. 

 
3. Using the new session key, A returns f(N2) to B. 

 

[Page 217]

Figure 7.11. Decentralized Key Distribution

[View full size image]

 
Thus, although each node must maintain at most (n 1) master keys, as many session keys as required 
may be generated and used. Because the messages transferred using the master key are short, 
cryptanalysis is difficult. As before, session keys are used for only a limited time to protect them.

Controlling Key Usage

The concept of a key hierarchy and the use of automated key distribution techniques greatly reduce the 
number of keys that must be manually managed and distributed. It may also be desirable to impose 
some control on the way in which automatically distributed keys are used. For example, in addition to 
separating master keys from session keys, we may wish to define different types of session keys on the 
basis of use, such as

●     Data-encrypting key, for general communication across a network
●     PIN-encrypting key, for personal identification numbers (PINs) used in electronic funds transfer 

and point-of-sale applications
●     File-encrypting key, for encrypting files stored in publicly accessible locations

To illustrate the value of separating keys by type, consider the risk that a master key is imported as a 
data-encrypting key into a device. Normally, the master key is physically secured within the 
cryptographic hardware of the key distribution center and of the end systems. Session keys encrypted 
with this master key are available to application programs, as are the data encrypted with such session 
keys. However, if a master key is treated as a session key, it may be possible for an unauthorized 
application to obtain plaintext of session keys encrypted with that master key.

Thus, it may be desirable to institute controls in systems that limit the ways in which keys are used, 
based on characteristics associated with those keys. One simple plan is to associate a tag with each key 
([JONE82]; see also [DAVI89]). The proposed technique is for use with DES and makes use of the extra 
8 bits in each 64-bit DES key. That is, the 8 nonkey bits ordinarily reserved for parity checking form the 
key tag. The bits have the following interpretation:
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●     One bit indicates whether the key is a session key or a master key.
●     One bit indicates whether the key can be used for encryption.
●     One bit indicates whether the key can be used for decryption.
●     The remaining bits are spares for future use.

[Page 218]

Because the tag is embedded in the key, it is encrypted along with the key when that key is distributed, 
thus providing protection. The drawbacks of this scheme are that (1) the tag length is limited to 8 bits, 
limiting its flexibility and functionality; and (2) because the tag is not transmitted in clear form, it can be 
used only at the point of decryption, limiting the ways in which key use can be controlled.

A more flexible scheme, referred to as the control vector, is described in [MATY91a and b]. In this 
scheme, each session key has an associated control vector consisting of a number of fields that specify 
the uses and restrictions for that session key. The length of the control vector may vary.

The control vector is cryptographically coupled with the key at the time of key generation at the KDC. 
The coupling and decoupling processes are illustrated in Figure 7.12. As a first step, the control vector is 
passed through a hash function that produces a value whose length is equal to the encryption key 
length. Hash functions are discussed in detail in Chapter 11. In essence, a hash function maps values 
from a larger range into a smaller range, with a reasonably uniform spread. Thus, for example, if 
numbers in the range 1 to 100 are hashed into numbers in the range 1 to 10, approximately 10% of the 
source values should map into each of the target values.

Figure 7.12. Control Vector Encryption and Decryption

(This item is displayed on page 219 in the print version) 

[View full size image]
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The hash value is then XORed with the master key to produce an output that is used as the key input for 
encrypting the session key. Thus,

Hash value = H = h(CV)

Key input = Km  H

Ciphertext = E([Km  H], Ks)

where Km is the master key and Ks is the session key. The session key is recovered in plaintext by the 

reverse operation:

D([Km  H], E([Km  H], Ks))

When a session key is delivered to a user from the KDC, it is accompanied by the control vector in clear 
form. The session key can be recovered only by using both the master key that the user shares with the 
KDC and the control vector. Thus, the linkage between the session key and its control vector is 
maintained.

Use of the control vector has two advantages over use of an 8-bit tag. First, there is no restriction on 
length of the control vector, which enables arbitrarily complex controls to be imposed on key use. 
Second, the control vector is available in clear form at all stages of operation. Thus, control of key use 
can be exercised in multiple locations.
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[Page 218 (continued)]

7.4. Random Number Generation

Random numbers play an important role in the use of encryption for various network security 
applications. In this section, we provide a brief overview of the use of random numbers in network 
security and then look at some approaches to generating random numbers.

[Page 220]

The Use of Random Numbers

A number of network security algorithms based on cryptography make use of random numbers. For 
example,

●     Reciprocal authentication schemes, such as illustrated in Figures 7.9 and 7.11. In both of these 
key distribution scenarios, nonces are used for handshaking to prevent replay attacks. The use of 
random numbers for the nonces frustrates opponents' efforts to determine or guess the nonce.

●     Session key generation, whether done by a key distribution center or by one of the principals.
●     Generation of keys for the RSA public-key encryption algorithm (described in Chapter 9).

These applications give rise to two distinct and not necessarily compatible requirements for a sequence 
of random numbers: randomness and unpredictability.

Randomness

Traditionally, the concern in the generation of a sequence of allegedly random numbers has been that 
the sequence of numbers be random in some well-defined statistical sense. The following two criteria 
are used to validate that a sequence of numbers is random:

●     Uniform distribution: The distribution of numbers in the sequence should be uniform; that is, 
the frequency of occurrence of each of the numbers should be approximately the same.

●     Independence: No one value in the sequence can be inferred from the others.

Although there are well-defined tests for determining that a sequence of numbers matches a particular 
distribution, such as the uniform distribution, there is no such test to "prove" independence. Rather, a 
number of tests can be applied to demonstrate if a sequence does not exhibit independence. The 
general strategy is to apply a number of such tests until the confidence that independence exists is 
sufficiently strong.

In the context of our discussion, the use of a sequence of numbers that appear statistically random 
often occurs in the design of algorithms related to cryptography. For example, a fundamental 
requirement of the RSA public-key encryption scheme discussed in Chapter 9 is the ability to generate 
prime numbers. In general, it is difficult to determine if a given large number N is prime. A brute-force 

approach would be to divide N by every odd integer less than . If N is on the order, say, of 10150, 
a not uncommon occurrence in public-key cryptography, such a brute-force approach is beyond the 
reach of human analysts and their computers. However, a number of effective algorithms exist that test 
the primality of a number by using a sequence of randomly chosen integers as input to relatively simple 
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computations. If the sequence is sufficiently long (but far, far less than ), the primality of a 
number can be determined with near certainty. This type of approach, known as randomization, crops 
up frequently in the design of algorithms. In essence, if a problem is too hard or time-consuming to 
solve exactly, a simpler, shorter approach based on randomization is used to provide an answer with 
any desired level of confidence.

Unpredictability

In applications such as reciprocal authentication and session key generation, the requirement is not so 
much that the sequence of numbers be statistically random but that the successive members of the 
sequence are unpredictable. With "true" random sequences, each number is statistically independent of 
other numbers in the sequence and therefore unpredictable. However, as is discussed shortly, true 
random numbers are seldom used; rather, sequences of numbers that appear to be random are 
generated by some algorithm. In this latter case, care must be taken that an opponent not be able to 
predict future elements of the sequence on the basis of earlier elements.

[Page 221]

Pseudorandom Number Generators (PRNGs)

Cryptographic applications typically make use of algorithmic techniques for random number generation. 
These algorithms are deterministic and therefore produce sequences of numbers that are not statistically 
random. However, if the algorithm is good, the resulting sequences will pass many reasonable tests of 
randomness. Such numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated by a deterministic 
algorithm as if they were random numbers. Despite what might be called philosophical objections to 
such a practice, it generally works. As one expert on probability theory puts it [HAMM91]:

For practical purposes we are forced to accept the awkward concept of "relatively 
random" meaning that with regard to the proposed use we can see no reason why they 
will not perform as if they were random (as the theory usually requires). This is highly 
subjective and is not very palatable to purists, but it is what statisticians regularly appeal 
to when they take "a random sample"they hope that any results they use will have 
approximately the same properties as a complete counting of the whole sample space 
that occurs in their theory.

Linear Congruential Generators

By far, the most widely used technique for pseudorandom number generation is an algorithm first 
proposed by Lehmer [LEHM51], which is known as the linear congruential method. The algorithm is 
parameterized with four numbers, as follows:

m the modulus m > 0

a the multiplier 0 < a < m

c the increment
0  c < m

X0 the starting value, or seed
0  X0 < m

file:///D|/1/0131873164/ch07lev1sec4.html (2 von 9) [14.10.2007 09:40:43]



Section 7.4.  Random Number Generation

 
The sequence of random numbers {Xn} is obtained via the following iterative equation:

X
n+1 = (aXn + c) mod m

If m, a, c, and X0 are integers, then this technique will produce a sequence of integers with each integer 

in the range 0  Xn < m.

The selection of values for a, c, and m is critical in developing a good random number generator. For 
example, consider a, = c = 1. The sequence produced is obviously not satisfactory. Now consider the 
values a = 7, c = 0, m = 32, and X0 = 1. This generates the sequence {7, 17, 23, 1, 7, etc.}, which is 

also clearly unsatisfactory. Of the 32 possible values, only 4 are used; thus, the sequence is said to have 
a period of 4. If, instead, we change the value of a to 5, then the sequence is {5, 25, 29, 17, 21, 9, 13, 
1, 5, etc.}, which increases the period to 8.

[Page 222]

We would like m to be very large, so that there is the potential for producing a long series of distinct 
random numbers. A common criterion is that m be nearly equal to the maximum representable 
nonnegative integer for a given computer. Thus, a value of m near to or equal to 231 is typically chosen.

[PARK88] proposes three tests to be used in evaluating a random number generator:

T1: The function should be a full-period generating function. That is, the function should 

generate all the numbers between 0 and m before repeating.

T2: The generated sequence should appear random. Because it is generated 

deterministically, the sequence is not random. There is a variety of statistical tests that 
can be used to assess the degree to which a sequence exhibits randomness.

T3: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, c, and m, these three tests can be passed. With respect to T1 it can be 

shown that if m is prime and c = 0, then for certain values of a, the period of the generating function is 
m 1, with only the value 0 missing. For 32-bit arithmetic, a convenient prime value of m is 231 1. Thus, 
the generating function becomes

Xn+1 = (aXn) mod(231 1)

Of the more than 2 billion possible choices for a, only a handful of multipliers pass all three tests. One 
such value is a = 75 = 16807, which was originally designed for use in the IBM 360 family of computers 
[LEWI69]. This generator is widely used and has been subjected to a more thorough testing than any 
other PRNG. It is frequently recommended for statistical and simulation work (e.g., [JAIN91], [SAUE81]).

The strength of the linear congruential algorithm is that if the multiplier and modulus are properly 
chosen, the resulting sequence of numbers will be statistically indistinguishable from a sequence drawn 
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at random (but without replacement) from the set 1, 2,...,m 1. But there is nothing random at all about 
the algorithm, apart from the choice of the initial value X0. Once that value is chosen, the remaining 

numbers in the sequence follow deterministically. This has implications for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and if the parameters are 
known (e.g., a =75, c = 0, m = 231 1), then once a single number is discovered, all subsequent 
numbers are known. Even if the opponent knows only that a linear congruential algorithm is being used, 
knowledge of a small part of the sequence is sufficient to determine the parameters of the algorithm. 
Suppose that the opponent is able to determine values for X0, X1, X2 and X3 Then

X1 = (aX0 + c) mod m

X2 = (aX1 + c) mod m

X3 = (aX2 + c) mod m

These equations can be solved for a, c, and m.

[Page 223]

Thus, although it is nice to be able to use a good PRNG, it is desirable to make the actual sequence used 
nonreproducible, so that knowledge of part of the sequence on the part of an opponent is insufficient to 
determine future elements of the sequence. This goal can be achieved in a number of ways. For 
example, [BRIG79] suggests using an internal system clock to modify the random number stream. One 
way to use the clock would be to restart the sequence after every N numbers using the current clock 
value (mod m) as the new seed. Another way would be simply to add the current clock value to each 
random number (mod m).

Cryptographically Generated Random Numbers

For cryptographic applications, it makes some sense to take advantage of the encryption logic available 
to produce random numbers. A number of means have been used, and in this subsection we look at 
three representative examples.

Cyclic Encryption

Figure 7.13 illustrates an approach suggested in [MEYE82]. In this case, the procedure is used to 
generate session keys from a master key. A counter with period N provides input to the encryption logic. 
For example, if 56-bit DES keys are to be produced, then a counter with period 256 can be used. After 
each key is produced, the counter is incremented by one. Thus, the pseudorandom numbers produced 
by this scheme cycle through a full period: Each of the outputs X0, X1,... XN1 is based on a different 

counter value and therefore X0  X1  ...  X
N1. Because the master key is protected, it is not 

computationally feasible to deduce any of the session keys (random numbers) through knowledge of one 
or more earlier session keys.

Figure 7.13. Pseudorandom Number Generation from a Counter
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To strengthen the algorithm further, the input could be the output of a full-period PRNG rather than a 
simple counter.

DES Output Feedback Mode

The output feedback (OFB) mode of DES, illustrated in Figure 6.6, can be used for key generation as 
well as for stream encryption. Notice that the output of each stage of operation is a 64-bit value, of 
which the s leftmost bits are fed back for encryption. Successive 64-bit outputs constitute a sequence of 
pseudorandom numbers with good statistical properties. Again, as with the approach suggested in the 
preceding subsection, the use of a protected master key protects the generated session keys.

ANSI X9.17 PRNG

One of the strongest (cryptographically speaking) PRNGs is specified in ANSI X9.17. A number of 
applications employ this technique, including financial security applications and PGP (the latter described 
in Chapter 15).

Figure 7.14 illustrates the algorithm, which makes use of triple DES for encryption. The ingredients are 
as follows:

●     Input: Two pseudorandom inputs drive the generator. One is a 64-bit representation of the 
current date and time, which is updated on each number generation. The other is a 64-bit seed 
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value; this is initialized to some arbitrary value and is updated during the generation process.
●     Keys: The generator makes use of three triple DES encryption modules. All three make use of 

the same pair of 56-bit keys, which must be kept secret and are used only for pseudorandom 
number generation.

●     Output: The output consists of a 64-bit pseudorandom number and a 64-bit seed value.

Define the following quantities:

DT
i

Date/time value at the beginning of ith generation stage

Vi Seed value at the beginning of ith generation stage

Ri Pseudorandom number produced by the ith generation stage

K1, K2 DES keys used for each stage

 
Figure 7.14. ANSI X9.17 Pseudorandom Number Generator
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Then

Ri = EDE([K1, K2], [Vi  EDE([K1, K2], DTi)])
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V
i+1 = EDE([K1, K2], [Ri  EDE([K1, K2], DTi)])

where EDE([K1,K2], X) refers to the sequence encrypt-decrypt-encrypt using two-key triple DES to 

encrypt X.

Several factors contribute to the cryptographic strength of this method. The technique involves a 112-bit 
key and three EDE encryptions for a total of nine DES encryptions. The scheme is driven by two 
pseudorandom inputs, the date and time value, and a seed produced by the generator that is distinct 
from the pseudorandom number produced by the generator. Thus, the amount of material that must be 
compromised by an opponent is overwhelming. Even if a pseudorandom number Ri were compromised, 

it would be impossible to deduce the V
i+1 from the R

i
 because an additional EDE operation is used to 

produce the V
i+1.

Blum Blum Shub Generator

A popular approach to generating secure pseudorandom number is known as the Blum, Blum, Shub 
(BBS) generator, named for its developers [BLUM86]. It has perhaps the strongest public proof of its 
cryptographic strength. The procedure is as follows. First, choose two large prime numbers, p and q, 
that both have a remainder of 3 when divided by 4. That is,

p  q  3 (mod 4)

This notation, explained more fully in Chapter 4, simply means that (p mod 4) = (q mod 4) = 3. For 

example, the prime numbers 7 and 11 satisfy 7  11  3 (mod 4). Let n = p x q. Next, choose a 
random number s, such that s is relatively prime to n; this is equivalent to saying that neither p nor q is 
a factor of s. Then the BBS generator produces a sequence of bits Bi according to the following 
algorithm:

X0 = s2 mod n

for i = 1 to 
   Xi = (Xi1)2 mod n

   Bi = Xi mod 2

 
Thus, the least significant bit is taken at each iteration. Table 7.2, shows an example of BBS operation. 
Here, n = 192649 = 383 x 503 and the seed s = 101355.

Table 7.2. 
Example 

Operation of 
BBS Generator

(This item is 
displayed on page 

226 in the print 
version) 
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i Xi Bi

0 20749  

1 143135 1

2 177671 1

3 97048 0

4 89992 0

5 174051 1

6 80649 1

7 45663 1

8 69442 0

9 186894 0

10 177046 0

11 137922 0

12 123175 1

13 8630 0

14 114386 0

15 14863 1

16 133015 1

17 106065 1

18 45870 0

19 137171 1

20 48060 0

 
The BBS is referred to as a cryptographically secure pseudorandom bit generator (CSPRBG). A 
CSPRBG is defined as one that passes the next-bit test, which, in turn, is defined as follows [MENE97]: A 
pseudorandom bit generator is said to pass the next-bit test if there is not a polynomial-time algorithm
[7]

 that, on input of the first k bits of an output sequence, can predict the (k + 1)st bit with probability 
significantly greater than 1/2. In other words, given the first k bits of the sequence, there is not a 
practical algorithm that can even allow you to state that the next bit will be 1 (or 0) with probability 
greater than 1/2. For all practical purposes, the sequence is unpredictable. The security of BBS is based 
on the difficulty of factoring n. That is, given n, we need to determine its two prime factors p and q.

[7] A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.
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True Random Number Generators

A true random number generator (TRNG) uses a nondeterministic source to produce randomness. Most 
operate by measuring unpredictable natural processes, such as pulse detectors of ionizing radiation 
events, gas discharge tubes, and leaky capacitors. Intel has developed a commercially available chip 
that samples thermal noise by amplifying the voltage measured across undriven resistors [JUN99]. A 
group at Bell Labs has developed a technique that uses the variations in the response time of raw read 
requests for one disk sector of a hard disk [JAKO98]. LavaRnd is an open source project for creating 
truly random numbers using inexpensive cameras, open source code, and inexpensive hardware. The 
system uses a saturated CCD in a light-tight can as a chaotic source to produce the seed. Software 
processes the result into truly random numbers in a variety of formats.

There are problems both with the randomness and the precision of such numbers [BRIG79], to say 
nothing of the clumsy requirement of attaching one of these devices to every system in an internetwork. 
Another alternative is to dip into a published collection of good-quality random numbers (e.g., 
[RAND55], [TIPP27]). However, these collections provide a very limited source of numbers compared to 
the potential requirements of a sizable network security application. Furthermore, although the numbers 
in these books do indeed exhibit statistical randomness, they are predictable, because an opponent who 
knows that the book is in use can obtain a copy.

Skew

A true random number generator may produce an output that is biased in some way, such as having 
more ones than zeros or vice versa. Various methods of modifying a bit stream to reduce or eliminate 
the bias have been developed. These are referred to as deskewing algorithms. One approach to deskew 
is to pass the bit stream through a hash function such as MD5 or SHA-1 (described in Part Two). The 
hash function produces an n-bit output from an input of arbitrary length. For deskewing, blocks of m 

input bits, with m  n can be passed through the hash function.

[Page 227]
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7.5. Recommended Reading and Web Sites

[FUMY93] is a good survey of key management principles.

Perhaps the best treatment of PRNGs is found in [KNUT98]. An alternative to the standard linear 
congruential algorithm, known as the linear recurrence algorithm, is explained in some detail in 
[BRIG79]. [ZENG91] assesses various PRNG algorithms for use in generating variable-length keys for 
Vernam types of ciphers.

An excellent survey of PRNGs, with an extensive bibliography, is [RITT91]. [MENE97] also provides a 
good discussions of secure PRNGs. Another good treatment, with an emphasis on practical 
implementation issues, is RFC 1750. This RFC also describes a number of deskewing techniques. 
[KELS98] is a good survey of secure PRNG techniques and cryptanalytic attacks on them.

BRIG79 Bright, H., and Enison, R. "Quasi-Random Number Sequences from Long-
Period TLP Generator with Remarks on Application to Cryptography." Computing 
Surveys, December 1979.

FUMY93 Fumy, S., and Landrock, P. "Principles of Key Management." IEEE Journal on 
Selected Areas in Communications, June 1993.

KELS98 Kelsey, J.; Schneier, B.; and Hall, C. "Cryptanalytic Attacks on Pseudorandom 
Number Generators." Proceedings, Fast Software Encryption, 1998. http://www.
schneier.com/paper-prngs.html

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical 
Algorithms. Reading, MA: Addison-Wesley, 1998.

MENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S. Handbook of Applied 
Cryptography. Boca Raton, FL: CRC Press, 1997.

RITT91 Ritter, T. "The Efficient Generation of Cryptographic Confusion Sequences." 
Cryptologia, vol. 15 no. 2, 1991. http://www.ciphersbyritter.com/ARTS/
CRNG2ART.HTM

ZENG91 Zeng. K.; Yang, C.; Wei, D.; and Rao, T. "Pseudorandom Bit Generators in 
Stream-Cipher Cryptography." Computer, February 1991.
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Recommended Web Sites

●     NIST Random Number Generation Technical Working Group: Contains documents and 
tests developed by NIST that related to PRNGs for cryptographic applications. Also has useful set 
of links.

[Page 228]
●     LavaRnd: LavaRnd is an open source project that uses a chaotic source to generate truly 

random numbers. The site also has background information on random numbers in general.
●     A Million Random Digits: Compiled by the RAND Corporation.
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7.6. Key Terms, Review Questions, and Problems

Key Terms

Blum, Blum, Shub generator

covert channel

deskewing

end-to-end encryption

key distribution

key distribution center (KDC)

linear congruential

link encryption

master key

nonce

pseudorandom number generator (PRNG)

session key

skew

traffic padding

true random number generator

wiring closet

Review Questions

7.1 For a user workstation in a typical business environment, list potential locations for 
confidentiality attacks.

7.2 What is the difference between link and end-to-end encryption?
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7.3 What types of information might be derived from a traffic analysis attack?

7.4 What is traffic padding and what is its purpose?

7.5 List ways in which secret keys can be distributed to two communicating parties.

7.6 What is the difference between a session key and a master key?

7.7 What is a nonce?

7.8 What is a key distribution center?

7.9 What is the difference between statistical randomness and unpredictability?

Problems

7.1 Electronic mail systems differ in the manner in which multiple recipients are handled. In 
some systems, the originating mail-handler makes all the necessary copies, and these are 
sent out independently. An alternative approach is to determine the route for each 
destination first. Then a single message is sent out on a common portion of the route, and 
copies are made only when the routes diverge; this process is referred to as mail bagging.

a.  

Leaving aside considerations of security, discuss the relative advantages and 
disadvantages of the two methods.

b.  

Discuss the security requirements and implications of the two methods.

7.2 Section 7.2 describes the use of message length as a means of constructing a covert 
channel. Describe three additional schemes for using traffic patterns to construct a covert 
channel.

7.3 One local area network vendor provides a key distribution facility, as illustrated in Figure 
7.15.

a.  

Describe the scheme.

b.  

Compare this scheme to that of Figure 7.9. What are the pros and cons?

[Page 229]
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Figure 7.15. Figure for Problem 7.3

[View full size image]

 

7.4 "We are under great pressure, Holmes." Detective Lestrade looked nervous. "We have 
learned that copies of sensitive government documents are stored in computers of one 
foreign embassy here in London. Normally these documents exist in electronic form only 
on a selected few government computers that satisfy the most stringent security 
requirements. However, sometimes they must be sent through the network connecting all 
government computers. But all messages in this network are encrypted using a top secret 
encryption algorithm certified by our best crypto experts. Even the NSA and the KGB are 
unable to break it. And now these documents have appeared in hands of diplomats of a 
small, otherwise insignificant, country. And we have no idea how it could happen."

"But you do have some suspicion who did it, do you?" asked Holmes.

"Yes, we did some routine investigation. There is a man who has legal access to one of the 
government computers and has frequent contacts with diplomats from the embassy. But 
the computer he has access to is not one of the trusted ones where these documents are 
normally stored. He is the suspect, but we have no idea how he could obtain copies of the 
documents. Even if he could obtain a copy of an encrypted document, he couldn't decrypt 
it."

"Hmm, please describe the communication protocol used on the network." Holmes opened 
his eyes, thus proving that he had followed Lestrade's talk with an attention that 
contrasted with his sleepy look.

"Well, the protocol is as follows. Each node N of the network has been assigned a unique 
secret key Kn. This key is used to secure communication between the node and a trusted 

server. That is, all the keys are stored also on the server. User A, wishing to send a secret 
message M to user B, initiates the following protocol:

1.  

A generates a random number R and sends to the server his name A, destination 
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B, and E(Ka, R).

2.  

Server responds by sending to E(Kb, R) to A.

3.  

A sends E(R, M) together with E(Kb, R) to B.

4.  

B knows Kb, thus decrypts E(Kb, R) to get R and will subsequently use R to decrypt 

E(R, M) to get M.

You see that a random key is generated every time a message has to be sent. I admit the 
man could intercept messages sent between the top secret trusted nodes, but I see no 
way he could decrypt them."

[Page 230]

"Well, I think you have your man, Lestrade. The protocol isn't secure because the server 
doesn't authenticate users who send him a request. Apparently designers of the protocol 
have believed that sending E(Kx, R) implicitly authenticates user X as the sender, as only 

X (and the server) knows Kx But you know that E(Kx, R) can be intercepted and later 

replayed. Once you understand where the hole is, you will be able to obtain enough 
evidence by monitoring the man's use of the computer he has access to. Most likely he 
works as follows. After intercepting E(Ka, R) and E(R, M) (see steps 1 and 3 of the 

protocol), the man, let's denote him as Z, will continue by pretending to be A and ...

Finish the sentence for Holmes.

7.5 If we take the linear congruential algorithm with an additive component of 0:

X
n+1

 = (aXn) mod m

then it can be shown that if m is prime, and if a given value of a produces the maximum 
period of m 1, then ak will also produce the maximum period, provided that k is less than 
m and that m 1 is not divisible by k. Demonstrate this by using X0 = 1 and m = 31 and 

producing the sequences for a = 3, 3,2, 33, and 34.
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7.6 a.  
What is the maximum period obtainable from the following generator?

X
n+1

 = (aXn) mod 24`

b.  

What should be the value of a?

c.  

What restrictions are required on the seed?

7.7 You may wonder why the modulus m = 231 1 was chosen for the linear congruential 
method instead of simply 231, because this latter number can be represented with no 
additional bits and the mod operation should be easier to perform. In general, the modulus 

2k 1 is preferable to 2k. Why is this so?

7.8 With the linear congruential algorithm, a choice of parameters that provides a full period 
does not necessarily provide a good randomization. For example, consider the following 
two generators:

X
n+1 = (6Xn) mod 13

X
n+1 = (7Xn) mod 13

 
Write out the two sequences to show that both are full period. Which one appears more 
random to you?

7.9 In any use of pseudorandom numbers, whether for encryption, simulation, or statistical 
design, it is dangerous to trust blindly the random number generator that happens to be 
available in your computer's system library. [PARK88] found that many contemporary 
textbooks and programming packages make use of flawed algorithms for pseudorandom 
number generation. This exercise will enable you to test your system.

The test is based on a theorem attributed to Ernesto Cesaro (see [KNUT98] for a proof), 
which states the following: Given two randomly chosen integers, x and y, the probability 
that gcd(x, y) = 1 is 6/π2. Use this theorem in a program to determine statistically the 
value of π. The main program should call three subprograms: the random number 
generator from the system library to generate the random integers; a subprogram to 
calculate the greatest common divisor of two integers using Euclid's Algorithm; and a 
subprogram that calculates square roots. If these latter two programs are not available, 
you will have to write them as well. The main program should loop through a large number 
of random numbers to give an estimate of the aforementioned probability. From this, it is 
a simple matter to solve for your estimate of π.

If the result is close to 3.14, congratulations! If not, then the result is probably low, 
usually a value of around 2.7. Why would such an inferior result be obtained?
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7.10 Suppose you have a true random bit generator where each bit in the generated stream 
has the same probability of being a 0 or 1 as any other bit in the stream and that the bits 
are not correlated; that is the bits are generated from identical independent distribution. 

However, the bit stream is biased. The probability of a 1 is 0.5 +  and the probability of 

a 0 is 0.5  where 0 <  < 0.5. A simple deskewing algorithm is as follows: Examine the 
bit stream as a sequence of non-overlapping pairs. Discard all 00 and 11 pairs. Replace 
each 01 pair with 0 and each 10 pair with 1.

[Page 231]

a.  

What is the probability of occurrence of each pair in the original sequence?

b.  

What is the probability of occurrence of 0 and 1 in the modified sequence?

c.  

What is the expected number of input bits to produce x output bits?

d.  

Suppose that the algorithm uses overlapping successive bit pairs instead of 
nonoverlapping successive bit pairs. That is, the first output bit is based on input 
bits 1 and 2, the second output bit is based on input bits 2 and 3, and so on. What 
can you say about the output bit stream?

7.11 Another approach to deskewing is to consider the bit stream as a sequence of non-
overlapping groups of n bits each and the output the parity of each group. That is, if a 
group contains an odd number of ones, the output is 1; otherwise the output is 0.

a.  

Express this operation in terms of a basic Boolean function.

b.  

Assume, as in the preceding problem, that the probability of a 1 is 0.5 + . If 
each group consists of 2 bits, what is the probability of an output of 1?

c.  

If each group consists of 4 bits, what is the probability of an output of 1?

d.  

Generalize the result to find the probability of an output of 1 for input groups of n 
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bits.

7.12 Suppose that someone suggests the following way to confirm that the two of you are both 
in possession of the same secret key. You create a random bit string the length of the key, 
XOR it with the key, and send the result over the channel. Your partner XORs the incoming 
block with the key (which should be the same as your key) and sends it back. You check, 
and if what you receive is your original random string, you have verified that your partner 
has the same secret key, yet neither of you has ever transmitted the key. Is there a flaw 
in this scheme?
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Part Two: Public-Key Encryption and Hash Functions

For practical reasons, it is desirable to use different encryption and 
decryption keys in a crypto-system. Such asymmetric systems allow the 
encryption key to be made available to anyone while preserving confidence 
that only people who hold the decryption key can decipher the information.

Computers at Risk: Safe Computing in the Information Age, National 
Research Council, 1991

After symmetric encryption, the other major form of encryption is public-key encryption, 
which has revolutionized communications security. A related cryptographic area is that of 
cryptographic hash functions. Hash functions are used in conjunction with symmetric 
ciphers for digital signatures. In addition, hash functions are used for message 
authentication. Symmetric ciphers are also used for key management. All of these areas 
are discussed in Part Two.

Road Map for Part Two

Chapter 8: Introduction to Number Theory

Most public-key schemes are based on number theory. While the reader can 
take the number theoretic results on faith, it is useful to have a basic grasp of 
the concepts of number theory. Chapter 8 provides an overview and 
numerous examples to clarify the concepts.

Chapter 9: Public-Key Cryptography and RSA

Chapter 9 introduces public-key cryptography and concentrates on its use to 
provide confidentiality. This chapter also examines the most widely used 
public-key cipher, the Rivest-Shamir-Adleman (RSA) algorithm.

[Page 233]

Chapter 10: Key Management; Other Public-Key Cryptosystems

Chapter 10 revisits the issue of key management in light of the capabilities of 
symmetric ciphers. The chapter also covers the widely used Diffie-Hellman 
key exchange technique and looks at a more recent public-key approach 
based on elliptic curves.

Chapter 11: Message Authentication and Hash Functions
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Of equal importance to confidentiality as a security measure is authentication. 
At a minimum, message authentication assures that a message comes from 
the alleged source. In addition, authentication can include protection against 
modification, delay, replay, and reordering. Chapter 11 begins with an 
analysis of the requirements for authentication and then provides a 
systematic presentation of approaches to authentication. A key element of 
authentication schemes is the use of an authenticator, usually either a 
message authentication code (MAC) or a hash function. Design considerations 
for both of these types of algorithms are examined, and several specific 
examples are analyzed.

Chapter 12: Hash and MAC Algorithms

Chapter 12 extends the discussion of the preceding chapter to discuss two of 
the most important cryptographic hash functions (SHA and Whirlpool) and two 
of the most important MACs (HMAC) and CMAC.

Chapter 13: Digital Signatures and Authentication Protocols

An important type of authentication is the digital signature. Chapter 13 
examines the techniques used to construct digital signatures and looks at an 
important standard, the Digital Signature Standard (DSS).

The various authentication techniques based on digital signatures are building 
blocks in putting together authentication algorithms. The design of such 
algorithms involves the analysis of subtle attacks that can defeat many 
apparently secure protocols. This issue is also addressed in Chapter 14.
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Chapter 8. Introduction to Number Theory

8.1 Prime Numbers

8.2 Fermat's and Euler's Theorems

Fermat's Theorem

Euler's Totient Function

Euler's Theorem

8.3 Testing for Primality

Miller-Rabin Algorithm

A Deterministic Primality Algorithm

Distribution of Primes

8.4 The Chinese Remainder Theorem

8.5 Discrete Logarithms

The Powers of an Integer, Modulo n

Logarithms for Modular Arithmetic

Calculation of Discrete Logarithms
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Chapter 8.  Introduction to Number Theory

[Page 235]

The Devil said to Daniel Webster: "Set me a task I can't carry out, and I'll give you 
anything in the world you ask for."

Daniel Webster: "Fair enough. Prove that for n greater than 2, the equation an + bn = cn 
has no non-trivial solution in the integers."

They agreed on a three-day period for the labor, and the Devil disappeared.

At the end of three days, the Devil presented himself, haggard, jumpy, biting his lip. 
Daniel Webster said to him, "Well, how did you do at my task? Did you prove the 
theorem?"

"Eh? No ... no, I haven't proved it."

"Then I can have whatever I ask for? Money? The Presidency?"

"What? Oh, thatof course. But listen! If we could just prove the following two lemmas"

The Mathematical Magpie, Clifton Fadiman

Key Points

●     A prime number is an integer that can only be divided without remainder by positive 
and negative values of itself and 1. Prime numbers play a critical role both in 
number theory and in cryptography.

●     Two theorems that play important roles in public-key cryptography are Fermat's 
theorem and Euler's theorem.

●     An important requirement in a number of cryptographic algorithms is the ability to 
choose a large prime number. An area of ongoing research is the development of 
efficient algorithms for determining if a randomly chosen large integer is a prime 
number.

●     Discrete logarithms are fundamental to a number of public-key algorithms. Discrete 
logarithms are analogous to ordinary logarithms, but operate over modular 
arithmetic.

 
A number of concepts from number theory are essential in the design of public-key cryptographic 
algorithms. This chapter provides an overview of the concepts referred to in other chapters. The reader 
familiar with these topics can safely skip this chapter.

As with Chapter 4, this chapter includes a number of examples, each of which is highlighted in a shaded 
box.
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8.1. Prime Numbers[1]

[1] In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative integers would 
introduce no essential differences.

A central concern of number theory is the study of prime numbers. Indeed, whole books have been 
written on the subject (e.g., [CRAN01], [RIBE96]). In this section we provide an overview relevant to 
the concerns of this book.

An integer p > 1 is a prime number if and only if its only divisors
[2]

 are ± 1 and ±p. Prime numbers 
play a critical role in number theory and in the techniques discussed in this chapter. Table 8.1 shows the 
primes less than 2000. Note the way the primes are distributed. In particular, note the number of 
primes in each range of 100 numbers.

[2] Recall from Chapter 4 that integer a is said to be a divisor of integer b if there is no remainder on division. Equivalently, we 
say that a divides b.

Table 8.1. Primes under 2000

(This item is displayed on page 237 in the print version) 

[View full size image]

 
Any integer a > 1 can be factored in a unique way as
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Equation 8-1 

 
where p1 < p2 < ... < pt are prime numbers and where each is a positive integer. This is known as the 

fundamental theorem of arithmetic; a proof can be found in any text on number theory.

91 = 7 x 13

3600 = 24 x 32 x 52

11011 = 7 x 112 x 13

 
It is useful for what follows to express this another way. If P is the set of all prime numbers, then any 
positive integer a can be written uniquely in the following form:

 
The right-hand side is the product over all possible prime numbers p; for any particular value of a, most 
of the exponents ap will be 0.

The value of any given positive integer can be specified by simply listing all the nonzero exponents in 
the foregoing formulation.

The integer 12 is represented by {a2 = 2, a3 = 1}.

The integer 18 is represented by {a2 = 1, a3 = 2}.

The integer 91 is represented by {a7 = 2, a13 = 1}.

 
Multiplication of two numbers is equivalent to adding the corresponding exponents. Given a 

 . Define k = ab We know that the integer k can be expressed as the 

product of powers of primes: . It follows that kp = ap + bp for all p  P.

[Page 238]

k = 12 x 18 = (22 x 3) x (2 x 32) = 216
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k2 = 2 + 1 = 3; k3 = 1 + 2 = 3

216 = 23 x 33 = 8 x 27

 
What does it mean, in terms of the prime factors of a and b, to say that a divides b? Any integer of the 
form can be divided only by an integer that is of a lesser or equal power of the same prime number, pj 

with j  n. Thus, we can say the following:

Given ,  If a|b, then ap  bp then for all p.

a = 12;b = 36; 12|36

12 = 22 x 3; 36 = 22 x 32

a2 = 2 = b2

a3 = 1  2 = b3

Thus, the inequality ap  bp is satisfied for all prime numbers.

 
It is easy to determine the greatest common divisor

[3]
 of two positive integers if we express each 

integer as the product of primes.

[3] Recall from Chapter 4 that the greatest common divisor of integers a and b, expressed gcd(a, b), is an integer c that 
divides both a and b without remainder and that any divisor of a and b is a divisor of c.

300 = 22 x 31 x 52

18 = 21 x 32

gcd(18,300) = 21 x 31 x 50 = 6

 
The following relationship always holds:

If k = gcd(a,b) then kp = min(ap, bp) for all p

Determining the prime factors of a large number is no easy task, so the preceding relationship does not 
directly lead to a practical method of calculating the greatest common divisor.
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8.2. Fermat's and Euler's Theorems

Two theorems that play important roles in public-key cryptography are Fermat's theorem and Euler's 
theorem.

[Page 239]

Fermat's Theorem[4]

[4] This is sometimes referred to as Fermat's little theorem.

Fermat's theorem states the following: If p is prime and a is a positive integer not divisible by p, then

Equation 8-2 

 
Proof: Consider the set of positive integers less than p:{1,2,..., p 1} and multiply each element by a, 
modulo p, to get the set X = {a mod p, 2a mod p, . . . (p 1)a mod p}. None of the elements of X is 
equal to zero because p does not divide a. Furthermore no two of the integers in X are equal. To see 

this, assume that ja  ka(mod p) where 1  j < k  p 1. Because a is relatively prime
[5]

 to p, we 
can eliminate a from both sides of the equation [see Equation (4.3)] resulting in: j  k(mode p). This 
last equality is impossible because j and k are both positive integers less than p. Therefore, we know 
that the (p 1) elements of X are all positive integers, with no two elements equal. We can conclude the 
X consists of the set of integers {1,2,..., p 1} in some order. Multiplying the numbers in both sets and 
taking the result mod p yields

[5] Recall from Chapter 4 that two numbers are relatively prime if they have no prime factors in common; that is, their only 
common divisor is 1. This is equivalent to saying that two numbers are relatively prime if their greatest common divisor is 1.

a x 2a x ... x (p 1)  [(1 x 2 x ... x (p 1)](mode p)

ap1(p 1)!  (p 1)!(mod p)

We can cancel the (p 1)! term because it is relatively prime to p [see Equation (4.3)]. This yields 
Equation (8.2).

a = 7, p = 19

72 = 49  11(mod 19)
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74  121  7(mod 19)

78  49  7(mod 19)

716  121  7(mod 19)

ap1 = 718 = 716 x 72  7 x 11  1(mod 19)

 
An alternative form of Fermat's theorem is also useful: If p is prime and a is a positive integer, then

Equation 8-3 

 
Note that the first form of the theorem [Equation (8.2)] requires that a be relatively prime to p, but this 
form does not.

p = 5,a = 3 ap = 35 = 243  3(mod 5) = a(mod p)

p = 5, a = 10 ap = 105 = 100000  10(mod 5) = 0(mod 5) = a(mod p)
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Euler's Totient Function

Before presenting Euler's theorem, we need to introduce an important quantity in number theory, 
referred to as Euler's totient function and written φ(n), defined as the number of positive integers less 
than n and relatively prime to n. By convention, φ(1) = 1.

Determine φ(37) and φ(35).

Because 37 is prime, all of the positive integers from 1 through 36 are relatively prime to 
37. Thus φ(37) = 36.

To determine φ(35), we list all of the positive integers less than 35 that are relatively prime 
to it:

1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18,

19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34.

There are 24 numbers on the list, so φ(35) = 24.
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Table 8.2 lists the first 30 values of φ(n). The value φ(1) is without meaning but is defined to have the 
value 1.

Table 
8.2. 

Some 
Values 

of 
Euler's 
Totient 
Function 

f(n)

n f(n)

1 1

2 1

3 2

4 2

5 4

6 2

7 6

8 4

9 6

10 4

11 10

12 4

13 12

14 6

15 8

16 8

17 16

18 6

19 18

20 8

21 12
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22 10

23 22

24 8

25 20

26 12

27 18

28 12

29 28

30 8

 
It should be clear that for a prime number p,

φ(p) = p 1

Now suppose that we have two prime numbers p and q, with p  q. Then we can show that for n = pq,

φ(n) = φ(pq) = φ(p) x φ(q) = (p 1) x (q x 1)

To see that φ(n) = φ(p) x φ(q), consider that the set of positive integers less that n is the set {1,..., (pq 
1)}. The integers in this set that are not relatively prime to n are the set {p,2 p,..., (q 1)p} and the set 
{q,2q,..., (p 1)q} Accordingly,

[Page 241]

φ(n) = (pq 1) [(q 1) + (p 1)]

= pq (p + q) + 1

= (p 1) x (q 1)

= φ(p) x φ(q)

φ(21) = φ(3) x φ(7) = (3 1) x (7 1) = 2 x 6 = 12

where the 12 integers are {1,2,4,5,8,10,11,13,16,17,19,20}

 
Euler's Theorem

Euler's theorem states that for every a and n that are relatively prime:

Equation 8-4 
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a = 3; n = 10; φ(10) = 4 aφ(n) = 34 = 81  1(mod 10) = 1 (mod n)

a = 2; n = 11; φ(11) = 10 aφ(n) = 210 = 1024  1(mod 11) = 1 (mod n)

 
Proof: Equation (8.4) is true if n is prime, because in that case φ(n) = (n 1) and Fermat's theorem 
holds. However, it also holds for any integer n. Recall that φ(n) is the number of positive integers less 
than n that are relatively prime to n. Consider the set of such integers, labeled as follows:

R {x1, x2,..., xφ(n)}

That is, each element xi of R is a unique positive integer less than n with gcd(xi, n) = 1. Now multiply 

each element by a, modulo n:

S = {(ax1 mod n), (ax2 mod n),..., (axφ(n) mod n)}

The set S is a permutation of R, by the following line of reasoning:

1.  

Because a is relatively prime to n and xi is relatively prime to n, axi must also be relatively prime 

to n. Thus, all the members of S are integers that are less than n and that are relatively prime to 
n.

2.  

There are no duplicates in S. Refer to Equation (4.3). If axi mod n = axj mod n then xi = xj.

Therefore,

 

[Page 242]
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This is the same line of reasoning applied to the proof of Fermat's theorem. As is the case for Fermat's 
theorem, an alternative form of the theorem is also useful:

Equation 8-5 

 
Again, similar to the case with Fermat's theorem, the first form of Euler's theorem [Equation (8.4)] 
requires that a be relatively prime to n, but this form does not.
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8.3. Testing for Primality

For many cryptographic algorithms, it is necessary to select one or more very large prime numbers at 
random. Thus we are faced with the task of determining whether a given large number is prime. There 
is no simple yet efficient means of accomplishing this task.

In this section, we present one attractive and popular algorithm. You may be surprised to learn that this 
algorithm yields a number that is not necessarily a prime. However, the algorithm can yield a number 
that is almost certainly a prime. This will be explained presently. We also make reference to a 
deterministic algorithm for finding primes. The section closes with a discussion concerning the 
distribution of primes.

Miller-Rabin Algorithm[6]

[6] Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller-Rabin test.

The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test a large number for 
primality. Before explaining the algorithm, we need some background. First, any positive odd integer n 

 3 can be expressed as follows:

n 1 = 2kq with k > 0, q odd

To see this, note that (n 1) is an even integer. Then, divide (n 1) by 2 until the result is an odd number 
q, for a total of k divisions. If n is expressed as a binary number, then the result is achieved by shifting 
the number to the right until the rightmost digit is a 1, for a total of k shifts. We now develop two 
properties of prime numbers that we will need.

Two Properties of Prime Numbers

The first property is stated as follows: If p is prime and a is a positive integer less than p, then a2 mod 
p = 1 if and only if either a mod p = 1 or a mod p= 1 mode p = p 1. By the rules of modular arithmetic 
(a mode p) (a mode p) = a2 mod p. Thus if either a mode p = 1 or a mod p = 1, then a2 mod p = 1. 
Conversely, if a2 mod p = 1, then (a mod p)2 = 1, which is true only for a mod p = 1 or a mod p = 1.

[Page 243]

The second property is stated as follows: Let p be a prime number greater than 2. We can then write 

p 1 = 2kq, with k > 0 q odd. Let a be any integer in the range 1 < a < p 1. Then one of the two 
following conditions is true:

1.  

aq is congruent to 1 modulo p. That is, aq mod p = 1, or equivalently, aq  1 (mod p).
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2.  

One of the numbers aq, a2q, a4q,..., a2k-1q is congruent to 1 modulo p. That is, there is some 

number j in the range (1  j  k) such that a2j-1q mod p = 1 mod p = p 1, or equivalently, a2j-

1q  1 (mod p).

Proof: Fermat's theorem [Equation (8.2)] states that an1  1 (mod n) if n is prime. We have p 1 = 

2kq. Thus, we know that ap1 mod p = a2kq mod p = 1. Thus, if we look at the sequence of numbers

Equation 8-6 

 
we know that the last number in the list has value 1. Further, each number in the list is the square of 
the previous number. Therefore, one of the following possibilities must be true:

1.  

The first number on the list, and therefore all subsequent numbers on the list, equals 1.

2.  

Some number on the list does not equal 1, but its square mod p does equal 1. By virtue of the 
first property of prime numbers defined above, we know that the only number that satisfies this 
condition p 1 is So, in this case, the list contains an element equal to p 1.

This completes the proof.

Details of the Algorithm

These considerations lead to the conclusion that if n is prime, then either the first element in the list of 

residues, or remainders, (aq, a2q,..., a2k-1q, a2kq) modulo n equals 1, or some element in the list equals 
(n 1); otherwise n is composite (i.e., not a prime). On the other hand, if the condition is met, that does 
not necessarily mean that n is prime. For example, if n = 2047 = 23 x 89, then n 1 = 2 x 1023. 
Computing, 21023 mod 2047 = 1, so that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The procedure TEST takes a candidate 
integer n as input and returns the result composite if n is definitely not a prime, and the result 
inconclusive if n may or may not be a prime.

TEST (n)
1.  Find integers k, q, with k > 0, q odd, so that (n  1
    = 2kq);
2.  Select a random integer a, 1 < a < n  1;

3.  if aq mod n = 1 then return("inconclusive");
4.  for j = 0 to k  1 do
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5.     if a2
jq
 mod n  n  1 then return("inconclusive");

6.  return("composite");

 

[Page 244]

Let us apply the test to the prime number n = 29. We have (n 1) = 28 = 22(7) = 2kq. 
First, let us try a = 10. We compute 107 mod 29 = 17, which is neither 1 nor 28, so we 
continue the test. The next calculation finds that (107)2 mod 29 = 28, and the test returns 
inconclusive (i.e., 29 may be prime). Let's try again with a = 2. We have the following 
calculations: 27 mod 29 = 12;214 mod 29 = 28; and the test again returns inconclusive. If 
we perform the test for all integers a in the range 1 through 28, we get the same 
inconclusive result, which is compatible with n being a prime number.

Now let us apply the test to the composite number n = 13 x 17 = 221. Then (n 1) = 220 = 

22(55) = 2kq. Let us try a = 5. Then we have 555 mod 221 = 112, which is neither 1 nor 
220; (555)2 mod 221 = 168. Because we have used all values of j (i.e., j = 0 andj = 1) in 
line 4 of the TEST algorithm, the test returns composite, indicating that 221 is definitely a 
composite number. But suppose we had selected a = 21. Then we have 2155 mod 221 = 
200; (2155)2 mod 221 = 220; and the test returns inconclusive, indicating that 221 may 
be prime. In fact, of the 218 integers from 2 through 219, four of these will return an 
inconclusive result, namely 21, 47, 174, and 200.

 
Repeated Use of the Miller-Rabin Algorithm

How can we use the Miller-Rabin algorithm to determine with a high degree of confidence whether or not 
an integer is prime? It can be shown [KNUT98] that given an odd number n that is not prime and a 
randomly chosen integer, a with 1 < a < n 1, the probability that TEST will return inconclusive (i.e., fail 
to detect that n is not prime) is less than 1/4. Thus, if t different values of a are chosen, the probability 

that all of them will pass TEST (return inconclusive) for n is less than (1/4)t For example, for t = 10, the 
probability that a nonprime number will pass all ten tests is less than 106. Thus, for a sufficiently large 
value of t, we can be confident that n is prime if Miller's test always returns inconclusive.

This gives us a basis for determining whether an odd integer n is prime with a reasonable degree of 
confidence. The procedure is as follows: Repeatedly invoke TEST (n) using randomly chosen values for 
a. If, at any point, TEST returns composite, then n is determined to be nonprime. If TEST continues to 
return inconclusive for t tests, for a sufficiently large value of t, assume that n is prime.

A Deterministic Primality Algorithm

Prior to 2002, there was no known method of efficiently proving the primality of very large numbers. All 
of the algorithms in use, including the most popular (Miller-Rabin), produced a probabilistic result. In 
2002, Agrawal, Kayal, and Saxena [AGRA02] developed a relatively simple deterministic algorithm that 
efficiently determines whether a given large number is a prime. The algorithm, known as the AKS 
algorithm, does not appear to be as efficient as the Miller-Rabin algorithm. Thus far, it has not 
supplanted this older, probabilistic technique [BORN03].
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Distribution of Primes

It is worth noting how many numbers are likely to be rejected before a prime number is found using the 
Miller-Rabin test, or any other test for primality. A result from number theory, known as the prime 
number theorem, states that the primes near n are spaced on the average one every (ln n) integers. 
Thus, on average, one would have to test on the order of ln(n) integers before a prime is found. 
Because all even integers can be immediately rejected, the correct figure is 0.5 ln(n). For example, if a 
prime on the order of magnitude of 2200 were sought, then about 0.5 ln(2200) = 69 trials would be 
needed to find a prime. However, this figure is just an average. In some places along the number line, 
primes are closely packed, and in other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063 are both 
prime. On the other hand, 1001! + 2,1001! + 3,..., 1001! + 1000, 1001! + 1001 is a 
sequence of 1000 consecutive composite integers.
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8.4. The Chinese Remainder Theorem

One of the most useful results of number theory is the Chinese remainder theorem (CRT).
[7]

 In 
essence, the CRT says it is possible to reconstruct integers in a certain range from their residues modulo 
a set of pairwise relatively prime moduli.

[7] The CRT is so called because it is believed to have been discovered by the Chinese mathematician Sun-Tsu in around 100 
A.D.

The 10 integers in Z10, that is the integers 0 through 9, can be reconstructed from their 

two residues modulo 2 and 5 (the relatively prime factors of 10). Say the known residues 
of a decimal digit x are r2 = 0 and r5 = 3; that is, x mod 2 =0 and x mod 5 = 3. Therefore, 

x is an even integer in Z10 whose remainder, on division by 5, is 3. The unique solution is x 

= 8.

 
The CRT can be stated in several ways. We present here a formulation that is most useful from the point 
of view of this text. An alternative formulation is explored in Problem 8.17. Let

 
where the mi are pairwise relatively prime; that is, gcd(mi, mj) = 1 for 1  i, j  k, and i  j. We can 

represent any integer A in ZM by a k-tuple whose elements are in Z
mi

 using the following 

correspondence:

Equation 8-7 

 
where A  ZM, ai  Zmi and ai = A mod mi for 1  i  k. The CRT makes two assertions.
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1.  
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The mapping of Equation (8.7) is a one-to-one correspondence (called a bijection) between ZM 

and the Cartesian product Z
m1 x Z

m2 x ... x Zmk. That is, for every integer A such that 0  A < 

M there is a unique k-tuple (a1, a2,..., ak
) with 0  ai < m

i
 that represents it, and for every such 

k-tuple (a1, a2,..., ak
) there is a unique integer A in ZM.

2.  

Operations performed on the elements of ZM can be equivalently performed on the corresponding 

k-tuples by performing the operation independently in each coordinate position in the 
appropriate system.

Let us demonstrate the first assertion. The transformation from A to (a1, a1,..., ak
) is obviously 

unique; that is, each ai is uniquely calculated as ai = A mod mi. Computing A from (a1, a1,..., ak
) can be 

done as follows. Let Mi = M/mi for 1  i  k. Note that Mi = m1 x m2 x ... x mi-1 x mi+1 x ... x mk so 

that Mi  0(mod mj) for all j  i. Then let

Equation 8-8 

 
By the definition of Mi it is relatively prime to mi and therefore has a unique multiplicative inverse mod 

mi So Equation (8.8) is well defined and produces a unique value ci. We can now compute:

Equation 8-9 

 
To show that the value of A produced by Equation (8.9) is correct, we must show that ai = A mod mi for 

1  i  k. Note that cj  Mj  0(mod mi) if j  i and that ci  1(mod mi). It follows that ai = A 

mod mi.

The second assertion of the CRT, concerning arithmetic operations, follows from the rules for modular 
arithmetic. That is, the second assertion can be stated as follows: If
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then

 
One of the useful features of the Chinese remainder theorem is that it provides a way to manipulate 
(potentially very large) numbers mod M in terms of tuples of smaller numbers. This can be useful when 
M is 150 digits or more. However, note that it is necessary to know beforehand the factorization of M.
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To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define
[8]

m1 = 37

m2 = 49

M = 1813

A = 973

We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm, we compute 

 = 34 mod m1 and  = 4 mod m2. (Note that we only need to compute each Mi 

and each  once.) Taking residues modulo 37 and 49, our representation of 973 is 
(11, 42), because 973 mod 37 = 11 and 973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)? First we compute 
(678)  (678 mod 37, 678 mod 49) = (12, 41). Then we add the tuples element-wise 
and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34). To verify that this has the 
correct effect, we compute

(23,34)  a1M1  + a2M2  mod M

= [(23)(49)(34) + (34)(37)(4)] mod 1813

= 43350 mod 1813

= 1651
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and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in the above 

derivation,  is the multiplicative inverse of M1 modulo m1, and  is the 

multiplicative inverse of M2 modulo m2.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34) by 73 and 
reduce to get (23 x 73 mod 37, 34 x 73 mod 49) = (14,32). It is easily verified that

(32,14)  [(14)(49)(34) + (32)(37)(4)] mod 1813

= 865

= 1651 x 73 mod 1813

 
[8] This example was provided by Professor Ken Calvert of Georgia Tech.
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[Page 247 (continued)]

8.5. Discrete Logarithms

Discrete logarithms are fundamental to a number of public-key algorithms, including Diffie-Hellman key 
exchange and the digital signature algorithm (DSA). This section provides a brief overview of discrete 
logarithms. For the interested reader, more detailed developments of this topic can be found in [ORE67] 
and [LEVE90].
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The Powers of an Integer, Modulo n

Recall from Euler's theorem [Equation (8.4)] that, for every a and n that are relatively prime:

aφ(n)  1(mod n)

where φ(n), Euler's totient function, is the number of positive integers less than n and relatively prime to 
n. Now consider the more general expression:

Equation 8-10 

 
If a and n are relatively prime, then there is at least one integer m that satisfies Equation (8.10), 
namely, m = φ(n). The least positive exponent m for which Equation (8.10) holds is referred to in 
several ways:

●     the order of a (mod n)
●     the exponent to which a belongs (mod n)
●     the length of the period generated by a
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To see this last point, consider the powers of 7, modulo 19:

71 7(mod 19)

72 = 49 = 2 x 19 + 11 11(mod 19)

73 = 343 = 18 x 19 + 1 1(mod 19)

74 = 2401 = 126 x 19 + 7 7(mod 19)

75 = 16807 = 884 x 19 + 11 11(mod 19)

 
There is no point in continuing because the sequence is repeating. This can be proven by 

noting that 73  1(mod 19) and therefore 73+j  737j  7j(mod 19), and hence any two 
powers of 7 whose exponents differ by 3 (or a multiple of 3) are congruent to each other 
(mod 19). In other words, the sequence is periodic, and the length of the period is the 

smallest positive exponent m such that 7m  1(mod 19).

 
Table 8.3 shows all the powers of a, modulo 19 for all positive a < 19. The length of the sequence for 
each base value is indicated by shading. Note the following:

1.  

All sequences end in 1. This is consistent with the reasoning of the preceding few paragraphs.

2.  

The length of a sequence divides φ(19) = 18. That is, an integral number of sequences occur in 
each row of the table.

3.  

Some of the sequences are of length 18. In this case, it is said that the base integer a generates 
(via powers) the set of nonzero integers modulo 19. Each such integer is called a primitive root 
of the modulus 19.
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Table 8.3. Powers of Integers, Modulo 19

[View full size image]
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More generally, we can say that the highest possible exponent to which a number can belong (mod n) is 
φ(n). If a number is of this order, it is referred to as a primitive root of n. The importance of this notion 
is that if a is a primitive root of n, then its powers

a, a2,..., aφ(n)

are distinct (mod n) and are all relatively prime to n. In particular, for a prime number p, if a is a 
primitive root of p, then

a, a2,..., ap1

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14, and 15.

Not all integers have primitive roots. In fact, the only integers with primitive roots are those of the form 

2, 4, pα, and 2pα, where p is any odd prime and α is a positive integer. The proof is not simple but can 
be found in many number theory books, including [ORE76].

Logarithms for Modular Arithmetic

With ordinary positive real numbers, the logarithm function is the inverse of exponentiation. An 
analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a number is defined to be 
the power to which some positive base (except 1) must be raised in order to equal the number. That is, 
for base x and for a value y:
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y = xlogx(y)

The properties of logarithms include the following:

logx(1) = 0

logx(x) = 1

Equation 8-11 

 
Equation 8-12 

 
Consider a primitive root a for some prime number p (the argument can be developed for nonprimes as 
well). Then we know that the powers of a from 1 through (p 1) produce each integer from 1 through (p 
1) exactly once. We also know that any integer b satisfies

b  r(mod p) for some r, where 0  r  (p 1)

by the definition of modular arithmetic. It follows that for any integer b and a primitive root a of prime 
number p, we can find a unique exponent i such that

b  ai(mod p) where 0  i  (p 1)
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This exponent i is referred to as the discrete logarithm of the number b for the base a (mod p). We 

denote this value as dlog
a.p

(b).
[9]

[9] Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this concept, much less 
an agreed name.

Note the following:

Equation 8-13 
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Equation 8-14 

 
Here is an example using a nonprime modulus, n = 9. Here φ(n) = 6 and a = 2 is a 
primitive root. We compute the various powers of a and find

20 = 1 24  7(mod 9)

21 = 2 25  5(mod 9)

22 = 4 26  1(mod 9)

23 = 8  

 
This gives us the following table of the numbers with given discrete logarithms (mod 9) for 
the root a = 2:

Logarithm 0 1 2 3 4 5

Number 1 2 4 8 7 5

 
To make it easy to obtain the discrete logarithms of a given number, we rearrange the 
table:

Number 1 2 4 5 7 8

Logarithm 0 1 2 5 4 3

 

 
Now consider

x = adloga,p(x) mod p y = adloga,p(y) mod p

xy = adloga,p(xy) mod p  

 
Using the rules of modular multiplication,
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But now consider Euler's theorem, which states that, for every a and n that are relatively prime:

aφ(n)  1(mod n)

[Page 253]

Any positive integer z can be expressed in the form z = q + kφ(n), with 0  q < φ(n). Therefore, by 
Euler's theorem,

az  aq(mod n) if z  q mod φ(n)

Applying this to the foregoing equality, we have

dlog
a,p

(xy)  [dlog
a,p

(x) + dlog
a,p

(y)] (mod φ(p))

and generalizing,

dlog
a,p

(yr)  [r x dlog
a.p

(y)] (mod φ(n))

This demonstrates the analogy between true logarithms and discrete logarithms.

Keep in mind that unique discrete logarithms mod m to some base a exist only if a is a primitive root of 
m.

Table 8.4, which is directly derived from Table 8.3, shows the sets of discrete logarithms that can be 
defined for modulus 19.

Table 8.4. Tables of Discrete Logarithms, Modulo 19

(This item is displayed on page 252 in the print version) 

[View full size image]
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Calculation of Discrete Logarithms

Consider the equation

y = gx mod p

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must perform x 
repeated multiplications, and algorithms exist for achieving greater efficiency (see Chapter 9).

However, given y, g, and p, it is, in general, very difficult to calculate x (take the discrete logarithm). 
The difficulty seems to be on the same order of magnitude as that of factoring primes required for RSA. 
At the time of this writing, the asymptotically fastest known algorithm for taking discrete logarithms 
modulo a prime number is on the order of [BETH91]:

e
((ln p)1/3(ln(ln p))2/3)

which is not feasible for large primes.
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[Page 253 (continued)]

8.6. Recommended Reading and Web Sites

There are many basic texts on the subject of number theory that provide far more detail than most 
readers of this book will desire. An elementary but nevertheless useful short introduction is [ORE67]. For 
the reader interested in a more in-depth treatment, two excellent textbooks on the subject are 
[KUMA98] and [ROSE05]. [LEVE90] is a readable and detailed account as well. All of these books include 
problems with solutions, enhancing their value for self-study.

For readers willing to commit the time, perhaps the best way to get a solid grasp of the fundamentals of 
number theory is to work their way through [BURN97], which consists solely of a series of exercises with 
solutions that lead the student step by step through the concepts of number theory; working through all 
of the exercises is equivalent to completing an undergraduate course in number theory.

[Page 254]

BURN97 Burn, R. A Pathway to Number Theory. Cambridge, England: Cambridge 
University Press, 1997.

KUMA98 Kumanduri, R., and Romero, C. Number Theory with Computer Applications. 
Upper Saddle River, NJ: Prentice Hall, 1998.

LEVE90 Leveque, W. Elementary Theory of Numbers. New York: Dover, 1990.

ORE67 Ore, O. Invitation to Number Theory. Washington, DC: The Mathematical 
Association of America, 1967,

ROSE05 Rosen, K. Elementary Number Theory and its Applications. Reading, MA: 
Addison-Wesley, 2000.

 
Recommended Web Site

●     The Prime Pages: Prime number research, records, and resources
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8.7. Key Terms, Review Questions, and Problems

Key Terms

bijection

composite number

Chinese remainder theorem

discrete logarithm

Euler's theorem

Euler's totient function

Fermat's theorem

index

order

prime number

primitive root

Review Questions

8.1 What is a prime number?

8.2 What is the meaning of the expression a divides b?

8.3 What is Euler's totient function?

8.4 The Miller-Rabin test can determine if a number is not prime but cannot determine if a 
number is prime. How can such an algorithm be used to test for primality?

8.5 What is a primitive root of a number?

8.6 What is the difference between an index and a discrete logarithm?

file:///D|/1/0131873164/ch08lev1sec7.html (1 von 6) [14.10.2007 09:40:51]



Section 8.7.  Key Terms, Review Questions, and Problems

Problems

8.1 The purpose of this problem is to determine how many prime numbers there are. 
Suppose there are a total of n prime numbers, and we list these in order:

p1 = 2 < p2 = 3 < p3 = 5 < ... < pn.

a.  

Define X = 1 +p1p2...pn. That is, X is equal to one plus the product of all the 

primes. Can we find a prime number pm that divides X?

b.  

What can you say about m?

c.  

Deduce that the total number of primes cannot be finite.

d.  

Show that pn+1  1 + p1p2...pn.

[Page 255]

8.2 The purpose of this problem is to demonstrate that the probability that two random 
numbers are relatively prime is about 0.6.

a.  

Let P = Pr[gcd(a,b) = 1]. Show that Pr[gcd(a,b) = d] = P/d2 Hint: Consider

the quantity gcd

b.  

The sum of the result of part (a) over all possible values of d is 1. That is: 

. Use this equality to determine the value of P. 
Hint: Use
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the identity .

8.3 Why is gcd(n,n +1) = 1 for two consecutive integers n and n + 1?

8.4 Using Fermat's theorem, find 3201 mod 11.

8.5 Use Fermat's Theorem to find a number a between 0 and 72 with a congruent to 9794 
modulo 73.

8.6 Use Fermat's Theorem to find a number x between 0 and 28 with x85 congruent to 6 
modulo 29. (You should not need to use any brute force searching.)

8.7 Use Euler's Theorem to find a number a between 0 and 9 such that a is congruent to 
71000 modulo 10. (Note that this is the same as the last digit of the decimal expansion 
of 71000.)

8.8 Use Euler's Theorem to find a number x between 0 and 28 with x85 congruent to 6 
modulo 35. (You should not need to use any brute force searching.)

8.9 Notice in Table 8.2 that φ(n) is even for n > 2. This is true for all n > 2. Give a concise 
argument why this is so.

8.10 Prove the following: If p is prime, then φ(pi) = pi pi1. Hint: What numbers have a 
factor in common with pi?

8.11 It can be shown (see any book on number theory) that if gcd(m, n) = 1 then φ(mn) = 
φ(m)φ(n). Using this property and the property developed in the preceding problem 
and the property that φ(p) = p 1 for p prime, it is straightforward to determine the 
value of φ(n) for any n. Determine the following:

a.  

φ(41)

b.  

φ(27)

c.  

φ(231)

d.  

φ(440)
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8.12 It can also be shown that for arbitrary positive integer a,φ(a) is given by:

 
where a is given by Equation (8.1), namely: . Demonstrate this 
result.

8.13
Consider the function: f(n) = number of elements in the set {a: 0  a < n and gcd(a,
n) = 1}. What is this function?

8.14 Although ancient Chinese mathematicians did good work coming up with their 
remainder theorem, they did not always get it right. They had a test for primality. The 

test said that n is prime if and only if n divides (2n 2).

a.  

Give an example that satisfies the condition using an odd prime.

b.  

The condition is obviously true for n = 2. Prove that the condition is true if n is 
an odd prime (proving the if condition)

c.  

Give an example of an odd n that is not prime and that does not satisfy the 
condition. You can do this with nonprime numbers up to a very large value. 
This misled the Chinese mathematicians into thinking that if the condition is 
true then n is prime.

d.  

Unfortunately, the ancient Chinese never tried n = 341, which is nonprime 
(341 = 11 x 31) and yet 341 divides 2341 2 with out remainder. Demonstrate 
that 2341  2 (mod 341) (disproving the only if condition). Hint: It is not 
necessary to calculate 2341; play around with the congruences instead.

[Page 256]

8.15 Show that if n is an odd composite integer, then the Miller-Rabin test will return 
inconclusive for a = 1 and a = (n 1).
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8.16 If n is composite and passes the Miller-Rabin test for the base a, then n is called a 
strong pseudoprime to the base a. Show that 2047 is a strong pseudoprime to the 
base 2.

8.17 A common formulation of the Chinese remainder theorem (CRT) is as follows: Let 

m1,..., mk be integers that are pairwise relatively prime for 1  i, j  k, and i  j. 

Define M to be the product of all the mi's. Let a1,..., ak be integers. Then the set of 

congruences:

x  a1(mod m1)

x  a2(mod m2)

x  ak(mod mk)

has a unique solution modulo M. Show that the theorem stated in this form is true.

8.18 The example used by Sun-Tsu to illustrate the CRT was

x  2(mod 3); x  3(mod 5); x  2(mod 7)

Solve for x.

8.19 Six professors begin courses on Monday, Tuesday, Wednesday, Thursday, Friday, and 
Saturday, respectively, and announce their intentions of lecturing at intervals of 2, 3, 
4, 1, 6, and 5 days, respectively. The regulations of the university forbid Sunday 
lectures (so that a Sunday lecture must be omitted). When first will all six professors 
find themselves compelled to omit a lecture? Hint: Use the CRT.

8.20 Find all primitive roots of 25.
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8.21 Given 2 as a primitive root of 29, construct a table of discrete logarithms, and use it to 
solve the following congruences:

a.  

17x2  10(mod 29)

b.  

x2 4x 16  0(mod 29)

c.  

x7  17(mod 29)

Programming Problems

8.22 Write a computer program that implements fast exponentiation (successive squaring) 
modulo n.

8.23 Write a computer program that implements the Miller-Rabin algorithm for a user-
specified n. The program should allow the user two choices: (1) specify a possible 
witness a to test using the Witness procedure, or (2) specify a number s of random 
witnesses for the Miller-Rabin test to check.
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Every Egyptian received two names, which were known respectively as the true name and 
the good name, or the great name and the little name; and while the good or little name 
was made public, the true or great name appears to have been carefully concealed.

The Golden Bough, Sir James George Frazer

Key Points

●     Asymmetric encryption is a form of cryptosystem in which encryption and 
decryption are performed using the different keysone a public key and one a private 
key. It is also known as public-key encryption.

●     Asymmetric encryption transforms plaintext into ciphertext using a one of two keys 
and an encryption algorithm. Using the paired key and a decryption algorithm, the 
plaintext is recovered from the ciphertext.

●     Asymmetric encryption can be used for confidentiality, authentication, or both.
●     The most widely used public-key cryptosystem is RSA. The difficulty of attacking 

RSA is based on the difficulty of finding the prime factors of a composite number.

 
The development of public-key cryptography is the greatest and perhaps the only true revolution in the 
entire history of cryptography. From its earliest beginnings to modern times, virtually all cryptographic 
systems have been based on the elementary tools of substitution and permutation. After millennia of 
working with algorithms that could essentially be calculated by hand, a major advance in symmetric 
cryptography occurred with the development of the rotor encryption/decryption machine. The 
electromechanical rotor enabled the development of fiendishly complex cipher systems. With the 
availability of computers, even more complex systems were devised, the most prominent of which was 
the Lucifer effort at IBM that culminated in the Data Encryption Standard (DES). But both rotor 
machines and DES, although representing significant advances, still relied on the bread-and-butter tools 
of substitution and permutation.

Public-key cryptography provides a radical departure from all that has gone before. For one thing, public-
key algorithms are based on mathematical functions rather than on substitution and permutation. More 
important, public-key cryptography is asymmetric, involving the use of two separate keys, in contrast to 
symmetric encryption, which uses only one key. The use of two keys has profound consequences in the 
areas of confidentiality, key distribution, and authentication, as we shall see.

Before proceeding, we should mention several common misconceptions concerning public-key 
encryption. One such misconception is that public-key encryption is more secure from cryptanalysis than 
is symmetric encryption. In fact, the security of any encryption scheme depends on the length of the 
key and the computational work involved in breaking a cipher. There is nothing in principle about either 
symmetric or public-key encryption that makes one superior to another from the point of view of 
resisting cryptanalysis.

[Page 259]

A second misconception is that public-key encryption is a general-purpose technique that has made 
symmetric encryption obsolete. On the contrary, because of the computational overhead of current 
public-key encryption schemes, there seems no foreseeable likelihood that symmetric encryption will be 
abandoned. As one of the inventors of public-key encryption has put it [DIFF88], "the restriction of 
public-key cryptography to key management and signature applications is almost universally accepted."
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Finally, there is a feeling that key distribution is trivial when using public-key encryption, compared to 
the rather cumbersome handshaking involved with key distribution centers for symmetric encryption. In 
fact, some form of protocol is needed, generally involving a central agent, and the procedures involved 
are not simpler nor any more efficient than those required for symmetric encryption (e.g., see analysis 
in [NEED78]).

This chapter and the next provide an overview of public-key cryptography. First, we look at its 
conceptual framework. Interestingly, the concept for this technique was developed and published before 
it was shown to be practical to adopt it. Next, we examine the RSA algorithm, which is the most 
important encryption/decryption algorithm that has been shown to be feasible for public-key encryption. 
Further topics are explored in Chapter 10 and Appendix F.

Much of the theory of public-key cryptosystems is based on number theory. If one is prepared to accept 
the results given in this chapter, an understanding of number theory is not strictly necessary. However, 
to gain a full appreciation of public-key algorithms, some understanding of number theory is required. 
Chapter 8 provides the necessary background in number theory.
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9.1. Principles of Public-Key Cryptosystems

The concept of public-key cryptography evolved from an attempt to attack two of the most difficult 
problems associated with symmetric encryption. The first problem is that of key distribution, which was 
examined in some detail in Chapter 7.

As we have seen, key distribution under symmetric encryption requires either (1) that two 
communicants already share a key, which somehow has been distributed to them; or (2) the use of a 
key distribution center. Whitfield Diffie, one of the discoverers of public-key encryption (along with 
Martin Hellman, both at Stanford University at the time), reasoned that this second requirement negated 
the very essence of cryptography: the ability to maintain total secrecy over your own communication. As 
Diffie put it [DIFF88], "what good would it do after all to develop impenetrable cryptosystems, if their 
users were forced to share their keys with a KDC that could be compromised by either burglary or 
subpoena?"

The second problem that Diffie pondered, and one that was apparently unrelated to the first was that of 
"digital signatures." If the use of cryptography was to become widespread, not just in military situations 
but for commercial and private purposes, then electronic messages and documents would need the 
equivalent of signatures used in paper documents. That is, could a method be devised that would 
stipulate, to the satisfaction of all parties, that a digital message had been sent by a particular person? 
This is a somewhat broader requirement than that of authentication, and its characteristics and 
ramifications are explored in Chapter 13.
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Diffie and Hellman achieved an astounding breakthrough in 1976 [DIFF76a, b] by coming up with a 
method that addressed both problems and that was radically different from all previous approaches to 

cryptography, going back over four millennia.
[1]

[1] Diffie and Hellman first publicly introduced the concepts of public-key cryptography in 1976. However, this is not the true 
beginning. Admiral Bobby Inman, while director of the National Security Agency (NSA), claimed that public-key cryptography 
had been discovered at NSA in the mid-1960s [SIMM93]. The first documented introduction of these concepts came in 
1970, from the Communications-Electronics Security Group, Britain's counterpart to NSA, in a classified report by James Ellis 
[ELLI70]. Ellis referred to the technique as nonsecret encryption and describes the discovery in [ELLI99].

In the next subsection, we look at the overall framework for public-key cryptography. Then we examine 
the requirements for the encryption/decryption algorithm that is at the heart of the scheme.

Public-Key Cryptosystems

Asymmetric algorithms rely on one key for encryption and a different but related key for decryption. 
These algorithms have the following important characteristic:

●     It is computationally infeasible to determine the decryption key given only knowledge of the 
cryptographic algorithm and the encryption key.
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In addition, some algorithms, such as RSA, also exhibit the following characteristic:

●     Either of the two related keys can be used for encryption, with the other used for decryption.

A public-key encryption scheme has six ingredients (Figure 9.1a; compare with Figure 2.1):

●     Plaintext: This is the readable message or data that is fed into the algorithm as input.
●     Encryption algorithm: The encryption algorithm performs various transformations on the 

plaintext.
●     Public and private keys: This is a pair of keys that have been selected so that if one is used for 

encryption, the other is used for decryption. The exact transformations performed by the 
algorithm depend on the public or private key that is provided as input.

●     Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and 
the key. For a given message, two different keys will produce two different ciphertexts.

●     Decryption algorithm: This algorithm accepts the ciphertext and the matching key and 
produces the original plaintext.

[Page 261]

Figure 9.1. Public-Key Cryptography

[View full size image]
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The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption of messages. 
 

2. Each user places one of the two keys in a public register or other accessible file. This is the public 
key. The companion key is kept private. As Figure 9.1a suggests, each user maintains a collection 
of public keys obtained from others. 
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[Page 262]
3. If Bob wishes to send a confidential message to Alice, Bob encrypts the message using Alice's 

public key. 
 

4. When Alice receives the message, she decrypts it using her private key. No other recipient can 
decrypt the message because only Alice knows Alice's private key. 
 

With this approach, all participants have access to public keys, and private keys are generated locally by 
each participant and therefore need never be distributed. As long as a user's private key remains 
protected and secret, incoming communication is secure. At any time, a system can change its private 
key and publish the companion public key to replace its old public key.

Table 9.1 summarizes some of the important aspects of symmetric and public-key encryption. To 
discriminate between the two, we refer to the key used in symmetric encryption as a secret key. The 

two keys used for asymmetric encryption are referred to as the public key and the private key.
[2]

 
Invariably, the private key is kept secret, but it is referred to as a private key rather than a secret key 
to avoid confusion with symmetric encryption.

[2] The following notation is used consistently throughout. A secret key is represented by Km, where m is some modifier; for 
example, Ka is a secret key owned by user A. A public key is represented by PUa, for user A, and the corresponding private 
key is PRa, Encryption of plaintext X can be performed with a secret key, a public key, or a private key, denoted by E(Ka, X), 
E(PUa, X), and E(PRa, X), respectively. Similarly, decryption of ciphertext C can be performed with a secret key, a public 
key, or a private key, denoted by D(Ka, X), D(PUa, X), and D(PRa, X), respectively.

Table 9.1. Conventional and Public-Key Encryption

Conventional Encryption Public-Key Encryption

Needed to Work: Needed to Work:

1.  
The same algorithm with the same key is 
used for encryption and decryption.

2.  

The sender and receiver must share the 
algorithm and the key.

1.  
One algorithm is used for encryption and 
decryption with a pair of keys, one for 
encryption and one for decryption.

2.  

The sender and receiver must each have 
one of the matched pair of keys (not the 
same one).

Needed for Security: Needed for Security:
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1.  
The key must be kept secret.

2.  

It must be impossible or at least 
impractical to decipher a message if no 
other information is available.

3.  

Knowledge of the algorithm plus samples 
of ciphertext must be insufficient to 
determine the key.

1.  
One of the two keys must be kept secret.

2.  

It must be impossible or at least 
impractical to decipher a message if no 
other information is available.

3.  

Knowledge of the algorithm plus one of 
the keys plus samples of ciphertext must 
be insufficient to determine the other key.

 
Let us take a closer look at the essential elements of a public-key encryption scheme, using Figure 9.2 
(compare with Figure 2.2). There is some source A that produces a message in plaintext, X =[X1, X2,..., 

XM,]. The M elements of X are letters in some finite alphabet. The message is intended for destination B. 

B generates a related pair of keys: a public key, PUb, and a private key, PUb. PUb is known only to B, 

whereas PU
b
 is publicly available and therefore accessible by A.

[Page 263]

Figure 9.2. Public-Key Cryptosystem: Secrecy

[View full size image]
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With the message X and the encryption key PUb as input, A forms the ciphertext Y = [Y1, Y2,..., YN]:

Y = E(PUb, X)

The intended receiver, in possession of the matching private key, is able to invert the transformation:

X = D(PRb, Y)

An adversary, observing Y and having access to PUb but not having access to PRb or X, must attempt to 

recover X and/or PRb. It is assumed that the adversary does have knowledge of the encryption (E) and 

decryption (D) algorithms. If the adversary is interested only in this particular message, then the focus 

of effort is to recover X, by generating a plaintext estimate  Often, however, the adversary is 
interested in being able to read future messages as well, in which case an attempt is made to recover 

PRb by generating an estimate .

We mentioned earlier that either of the two related keys can be used for encryption, with the other 
being used for decryption. This enables a rather different cryptographic scheme to be implemented. 
Whereas the scheme illustrated in Figure 9.2 provides confidentiality, Figures 9.1b and 9.3 show the use 
of public-key encryption to provide authentication:
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Y = E(PRa, X)

Y = E(PUa, Y)

Figure 9.3. Public-Key Cryptosystem: Authentication

[View full size image]

file:///D|/1/0131873164/ch09lev1sec1.html (6 von 11) [14.10.2007 09:40:54]

file:///D|/1/0131873164/images/09fig03_alt.jpg


Section 9.1.  Principles of Public-Key Cryptosystems

 
In this case, A prepares a message to B and encrypts it using A's private key before transmitting it. B 
can decrypt the message using A's public key. Because the message was encrypted using A's private 
key, only A could have prepared the message. Therefore, the entire encrypted message serves as a 
digital signature. In addition, it is impossible to alter the message without access to A's private key, so 
the message is authenticated both in terms of source and in terms of data integrity.

In the preceding scheme, the entire message is encrypted, which, although validating both author and 
contents, requires a great deal of storage. Each document must be kept in plaintext to be used for 
practical purposes. A copy also must be stored in ciphertext so that the origin and contents can be 
verified in case of a dispute. A more efficient way of achieving the same results is to encrypt a small 
block of bits that is a function of the document. Such a block, called an authenticator, must have the 
property that it is infeasible to change the document without changing the authenticator. If the 
authenticator is encrypted with the sender's private key, it serves as a signature that verifies origin, 
content, and sequencing. Chapter 13 examines this technique in detail.

It is important to emphasize that the encryption process depicted in Figures 9.1b and 9.3 does not 
provide confidentiality. That is, the message being sent is safe from alteration but not from 
eavesdropping. This is obvious in the case of a signature based on a portion of the message, because 
the rest of the message is transmitted in the clear. Even in the case of complete encryption, as shown in 
Figure 9.3, there is no protection of confidentiality because any observer can decrypt the message by 
using the sender's public key.

[Page 265]

It is, however, possible to provide both the authentication function and confidentiality by a double use of 
the public-key scheme (Figure 9.4):

Z = E(PUb, E(PRa, X))
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X = D(PUa, E(PRb, Z))

Figure 9.4. Public-Key Cryptosystem: Authentication and Secrecy

[View full size image]

 
In this case, we begin as before by encrypting a message, using the sender's private key. This provides 
the digital signature. Next, we encrypt again, using the receiver's public key. The final ciphertext can be 
decrypted only by the intended receiver, who alone has the matching private key. Thus, confidentiality is 
provided. The disadvantage of this approach is that the public-key algorithm, which is complex, must be 
exercised four times rather than two in each communication.

Applications for Public-Key Cryptosystems

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is otherwise likely to 
lead to confusion. Public-key systems are characterized by the use of a cryptographic algorithm with two 
keys, one held private and one available publicly. Depending on the application, the sender uses either 
the sender's private key or the receiver's public key, or both, to perform some type of cryptographic 
function. In broad terms, we can classify the use of public-key cryptosystems into three categories:

●     Encryption/decryption: The sender encrypts a message with the recipient's public key.
●     Digital signature: The sender "signs" a message with its private key. Signing is achieved by a 

cryptographic algorithm applied to the message or to a small block of data that is a function of 
the message.

[Page 266]
●     Key exchange: Two sides cooperate to exchange a session key. Several different approaches 

are possible, involving the private key(s) of one or both parties.

Some algorithms are suitable for all three applications, whereas others can be used only for one or two 
of these applications. Table 9.2 indicates the applications supported by the algorithms discussed in this 
book.
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Table 9.2. Applications for Public-Key Cryptosystems

Algorithm Encryption/Decryption Digital Signature Key Exchange

RSA Yes Yes Yes

Elliptic Curve Yes Yes Yes

Diffie-Hellman No No Yes

DSS No Yes No

 
Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figures 9.2 through 9.4 depends on a cryptographic algorithm based on 
two related keys. Diffie and Hellman postulated this system without demonstrating that such algorithms 
exist. However, they did lay out the conditions that such algorithms must fulfill [DIFF76b]:

1.  

It is computationally easy for a party B to generate a pair (public key PUb, private key PRb).

2.  

It is computationally easy for a sender A, knowing the public key and the message to be 
encrypted, M, to generate the corresponding ciphertext:

C = E(PUb, M)

3.  

It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private 
key to recover the original message:

M = D(PRb, C) = D[PRb, E(PUb, M)]

4.  

It is computationally infeasible for an adversary, knowing the public key, PUb, to determine the 

private key, PRb.

5.  

It is computationally infeasible for an adversary, knowing the public key, PUb, and a ciphertext, 

C, to recover the original message, M.
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We can add a sixth requirement that, although useful, is not necessary for all public-key 
applications:

6.  

The two keys can be applied in either order:

M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

These are formidable requirements, as evidenced by the fact that only a few algorithms (RSA, elliptic 
curve cryptography, Diffie-Hellman, DSS) have received widespread acceptance in the several decades 
since the concept of public-key cryptography was proposed.

[Page 267]

Before elaborating on why the requirements are so formidable, let us first recast them. The 

requirements boil down to the need for a trap-door one-way function. A one-way function
[3]

 is one that 
maps a domain into a range such that every function value has a unique inverse, with the condition that 
the calculation of the function is easy whereas the calculation of the inverse is infeasible:

[3] Not to be confused with a one-way hash function, which takes an arbitrarily large data field as its argument and maps it to a 
fixed output. Such functions are used for authentication (see Chapter 11).

Y = f(X) easy

X = f1(X) infeasible

Generally, easy is defined to mean a problem that can be solved in polynomial time as a function of 
input length. Thus, if the length of the input is n bits, then the time to compute the function is 
proportional to na where a is a fixed constant. Such algorithms are said to belong to the class P. The 
term infeasible is a much fuzzier concept. In general, we can say a problem is infeasible if the effort to 
solve it grows faster than polynomial time as a function of input size. For example, if the length of the 

input is n bits and the time to compute the function is proportional to 2n, the problem is considered 
infeasible. Unfortunately, it is difficult to determine if a particular algorithm exhibits this complexity. 
Furthermore, traditional notions of computational complexity focus on the worst-case or average-case 
complexity of an algorithm. These measures are inadequate for cryptography, which requires that it be 
infeasible to invert a function for virtually all inputs, not for the worst case or even average case. A brief 
introduction to some of these concepts is provided in Appendix 9B.

We now turn to the definition of a trap-door one-way function, which is easy to calculate in one direction 
and infeasible to calculate in the other direction unless certain additional information is known. With the 
additional information the inverse can be calculated in polynomial time. We can summarize as follows: A 
trap-door one-way function is a family of invertible functions f

k
, such that
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Thus, the development of a practical public-key scheme depends on discovery of a suitable trap-door 
one-way function.

Public-Key Cryptanalysis

As with symmetric encryption, a public-key encryption scheme is vulnerable to a brute-force attack. The 
countermeasure is the same: Use large keys. However, there is a tradeoff to be considered. Public-key 
systems depend on the use of some sort of invertible mathematical function. The complexity of 
calculating these functions may not scale linearly with the number of bits in the key but grow more 
rapidly than that. Thus, the key size must be large enough to make brute-force attack impractical but 
small enough for practical encryption and decryption. In practice, the key sizes that have been proposed 
do make brute-force attack impractical but result in encryption/decryption speeds that are too slow for 
general-purpose use. Instead, as was mentioned earlier, public-key encryption is currently confined to 
key management and signature applications.

[Page 268]

Another form of attack is to find some way to compute the private key given the public key. To date, it 
has not been mathematically proven that this form of attack is infeasible for a particular public-key 
algorithm. Thus, any given algorithm, including the widely used RSA algorithm, is suspect. The history 
of cryptanalysis shows that a problem that seems insoluble from one perspective can be found to have a 
solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This is, in essence, a probable-
message attack. Suppose, for example, that a message were to be sent that consisted solely of a 56-bit 
DES key. An adversary could encrypt all possible 56-bit DES keys using the public key and could 
discover the encrypted key by matching the transmitted ciphertext. Thus, no matter how large the key 
size of the public-key scheme, the attack is reduced to a brute-force attack on a 56-bit key. This attack 
can be thwarted by appending some random bits to such simple messages.
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9.2. The RSA Algorithm

The pioneering paper by Diffie and Hellman [DIFF76b] introduced a new approach to cryptography and, 
in effect, challenged cryptologists to come up with a cryptographic algorithm that met the requirements 
for public-key systems. One of the first of the responses to the challenge was developed in 1977 by Ron 

Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78].
[4]

 The Rivest-Shamir-
Adleman (RSA) scheme has since that time reigned supreme as the most widely accepted and 
implemented general-purpose approach to public-key encryption.

[4] Apparently, the first workable public-key system for encryption/decryption was put forward by Clifford Cocks of Britain's 
CESG in 1973 [COCK73]; Cocks's method is virtually identical to RSA.

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and n 1 
for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 21024. We 
examine RSA in this section in some detail, beginning with an explanation of the algorithm. Then we 
examine some of the computational and cryptanalytical implications of RSA.

Description of the Algorithm

The scheme developed by Rivest, Shamir, and Adleman makes use of an expression with exponentials. 
Plaintext is encrypted in blocks, with each block having a binary value less than some number n. That is, 

the block size must be less than or equal to log2(n); in practice, the block size is i bits, where 2i < n  

2i+1. Encryption and decryption are of the following form, for some plaintext block M and ciphertext 
block C:

C = Me mod n

M = Cd mod n = (Me)d mod n = Med mod n

Both sender and receiver must know the value of n. The sender knows the value of e, and only the 
receiver knows the value of d. Thus, this is a public-key encryption algorithm with a public key of PU = 
{e, n} and a private key of PU = {d, n}. For this algorithm to be satisfactory for public-key encryption, 
the following requirements must be met:

[Page 269]

1.  

It is possible to find values of e, d, n such that Med mod n = M for all M < n.

2.  

It is relatively easy to calculate mod Me mod n and Cd for all values of M < n.
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3.  

It is infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions later. We need to find a 
relationship of the form

Med mod n = M

The preceding relationship holds if e and d are multiplicative inverses modulo φ(n), where φ(n) is the 
Euler totient function. It is shown in Chapter 8 that for p, q prime, φ(pq) = (p 1)(q 1) The relationship 
between e and d can be expressed as

Equation 9-1 

 
This is equivalent to saying

ed  1 mod φ(n)

d  e1 mod φ(n)

That is, e and d are multiplicative inverses mod φ(n). Note that, according to the rules of modular 
arithmetic, this is true only if d (and therefore e) is relatively prime to φ(n). Equivalently, gcd(φ(n),d) = 
1. See Appendix 9A for a proof that Equation (9.1) satisfies the requirement for RSA.

We are now ready to state the RSA scheme. The ingredients are the following:

p,q, two prime numbers (private, chosen)

n = pq (public, calculated)

e, with gcd(φ(n),e) = 1;1 < e < φ(n) (public, chosen)

d  e1(mod φ(n)) (private, calculated)

 
The private key consists of {d, n} and the public key consists of {e, n}. Suppose that user A has 
published its public key and that user B wishes to send the message M to A. Then B calculates C = Me 
mod n and transmits C. On receipt of this ciphertext, user A decrypts by calculating M = Cd mod n.

Figure 9.5 summarizes the RSA algorithm. An example, from [SING99], is shown in Figure 9.6. For this 
example, the keys were generated as follows:

1.  

Select two prime numbers, p = 17 and q = 11.
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2.  

Calculate n = pq = 17 x 11 = 187.

[Page 270]
3.  

Calculate φ(n) = (p 1)(q 1) = 16 x 10 = 160.

4.  

Select e such that e is relatively prime to φ(n) = 160 and less than φ(n) we choose e = 7.

5.  

Determine d such that de  1 (mod 160) and d < 160. The correct value is d = 23, because 23 
x 7 = 161 = 10 x 160 + 1; d can be calculated using the extended Euclid's algorithm (Chapter 4).

Figure 9.5. The RSA Algorithm
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Figure 9.6. Example of RSA Algorithm

 
The resulting keys are public key PU = {7,187} and private key PR = {23,187}. The example shows the 
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use of these keys for a plaintext input of M = 88. For encryption, we need to calculate C = 887 mod 187. 
Exploiting the properties of modular arithmetic, we can do this as follows:

[Page 271]

887 mod 187 = [(884 mod 187) x (882 mod 187) x (881 mod 187)] mod 187

881 mod 187 = 88

882 mod 187 = 7744 mod 187 = 77

884 mod 187 = 59,969,536 mod 187 = 132

887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 1123 mod 187:

1123 mod 187 = [(111 mod 187) x (112 mod 187) x (114 mod 187) x (118 mod 187) x (118 mod 187)] 
mod 187

111 mod 187 = 11

112 mod 187 = 121

114 mod 187 = 14,641 mod 187 = 55

118 mod 187 = 214,358,881 mod 187 = 33

1123 mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245 mod 187 = 88

Computational Aspects

We now turn to the issue of the complexity of the computation required to use RSA. There are actually 
two issues to consider: encryption/decryption and key generation. Let us look first at the process of 
encryption and decryption and then consider key generation.

Exponentiation in Modular Arithmetic

Both encryption and decryption in RSA involve raising an integer to an integer power, mod n. If the 
exponentiation is done over the integers and then reduced modulo n, the intermediate values would be 
gargantuan. Fortunately, as the preceding example shows, we can make use of a property of modular 
arithmetic:

[(a mod n) x (b mod n)] mod n = (a x b) mod n

Thus, we can reduce intermediate results modulo n. This makes the calculation practical.

Another consideration is the efficiency of exponentiation, because with RSA we are dealing with 
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potentially large exponents. To see how efficiency might be increased, consider that we wish to compute 
x16. A straightforward approach requires 15 multiplications:

x16 = x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x

However, we can achieve the same final result with only four multiplications if we repeatedly take the 
square of each partial result, successively forming x2, x4, x8, x16. As another example, suppose we wish 
to calculate x11 mod n for some integers x and n. Observe that x11 = x1+2+8 = (x)(x2)(x8). In this case 
we compute x mod n, x2 mod n, x4 mod n, and x8 mod n and then calculate [(x mod n) x (x2 mod n) x 
(x8 mod n) mod n.

[Page 272]

More generally, suppose we wish to find the value ab with a and b positive integers. If we express b as a 
binary number bkbk1 ... b0 then we have

 
Therefore,

 
We can therefore develop the algorithm

[5]
 for computing ab mod n, shown in Figure 9.7. Table 9.3 

shows an example of the execution of this algorithm. Note that the variable c is not needed; it is 
included for explanatory purposes. The final value of c is the value of the exponent.

[5] The algorithm has a long history; this particular pseudocode expression is from [CORM01].

Figure 9.7. Algorithm for Computing ab mod n

Note: The integer b is expressed as a binary number bkbk1 ... b0
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Table 9.3. Result of the Fast Modular 
Exponentiation Algorithm for ab mod n, where 

a = 7, b = 560 = 1000110000, n = 561

i 9 8 7 6 5 4 3 2 1 0

bi 1 0 0 0 1 1 0 0 0 0

c 1 2 4 8 17 35 70 140 280 560

f 7 49 157 526 160 241 298 166 67 1

 

[Page 273]

Efficient Operation Using the Public Key

To speed up the operation of the RSA algorithm using the public key, a specific choice of e is usually 
made. The most common choice is 65537 (216 1); two other popular choices are 3 and 17. Each of 
these choices has only two 1 bits and so the number of multiplications required to perform 
exponentiation is minimized.

However, with a very small public key, such as e = 3, RSA becomes vulnerable to a simple attack. 
Suppose we have three different RSA users who all use the value e = 3 but have unique values of n, 
namely n1, n2, n3. If user A sends the same encrypted message M to all three users, then the three 

ciphertexts are C1 = M3 mod n1; C2 = M3 mod n2; C3 = M3 mod n3. It is likely that n1, n2, and n3 are 
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pairwise relatively prime. Therefore, one can use the Chinese remainder theorem (CRT) to compute M3 
mod (n1n2n3). By the rules of the RSA algorithm, M is less than each of the ni therefore M3 < n1n2n3. 

Accordingly, the attacker need only compute the cube root of M3. This attack can be countered by 
adding a unique pseudorandom bit string as padding to each instance of M to be encrypted. This 
approach is discussed subsequently.

The reader may have noted that the definition of the RSA algorithm (Figure 9.5) requires that during 
key generation the user selects a value of e that is relatively prime to φ(n). Thus, for example, if a user 

has preselected e = 65537 and then generated primes p and q, it may turn out that gcd(φ(n),e)  1, 
Thus, the user must reject any value of p or q that is not congruent to 1 (mod 65537).

Efficient Operation Using the Private Key

We cannot similarly choose a small constant value of d for efficient operation. A small value of d is 
vulnerable to a brute-force attack and to other forms of cryptanalysis [WIEN90]. However, there is a 
way to speed up computation using the CRT. We wish to compute the value M = Cd mod n. Let us define 
the following intermediate results:

Vp = Cd mod p Vq = Cd mod q

 
Following the CRT, Equation (8.8), define the quantities:

Xp = q x (q1 mod p) Xq = p x (p1 mod q)

 
The CRT then shows, using Equation (8.9), that

M = (VpXp + VqXq) mod n

Further, we can simplify the calculation of Vp and Vq using Fermat's theorem, which states that ap1  1 

(mod p) if p and a are relatively prime. Some thought should convince you that the following are valid:

Vp = Cd mod p = Cd mod (p1) mod p Vq = Cd mod q = Cd mod (q1) mod q

 
The quantities d mod (P1) and d mod (q1) can be precalculated. The end result is that the calculation is 
approximately four times as fast as evaluating M = Cd mod n directly [BONE02].

Key Generation

Before the application of the public-key cryptosystem, each participant must generate a pair of keys. 
This involves the following tasks:

●     Determining two prime numbers, p and q
●     Selecting either e or d and calculating the other
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[Page 274]

First, consider the selection of p and q. Because the value of n = pq will be known to any potential 
adversary, to prevent the discovery of p and q by exhaustive methods, these primes must be chosen 
from a sufficiently large set (i.e., p and q must be large numbers). On the other hand, the method used 
for finding large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large primes, so some other means of 
tackling the problem is needed. The procedure that is generally used is to pick at random an odd 
number of the desired order of magnitude and test whether that number is prime. If not, pick successive 
random numbers until one is found that tests prime.

A variety of tests for primality have been developed (e.g., see [KNUT98] for a description of a number of 
such tests). Almost invariably, the tests are probabilistic. That is, the test will merely determine that a 
given integer is probably prime. Despite this lack of certainty, these tests can be run in such a way as to 
make the probability as close to 1.0 as desired. As an example, one of the more efficient and popular 
algorithms, the Miller-Rabin algorithm, is described in Chapter 8. With this algorithm and most such 
algorithms, the procedure for testing whether a given integer n is prime is to perform some calculation 
that involves n and a randomly chosen integer a. If n "fails" the test, then n is not prime. If n "passes" 
the test, then n may be prime or nonprime. If n passes many such tests with many different randomly 
chosen values for a, then we can have high confidence that n is, in fact, prime.

In summary, the procedure for picking a prime number is as follows.

1. Pick an odd integer n at random (e.g., using a pseudorandom number generator). 
 

2. Pick an integer a < n at random. 
 

3. Perform the probabilistic primality test, such as Miller-Rabin, with a as a parameter. If n fails the 
test, reject the value n and go to step 1. 
 

4. If n has passed a sufficient number of tests, accept n; otherwise, go to step 2. 
 

This is a somewhat tedious procedure. However, remember that this process is performed relatively 
infrequently: only when a new pair (PU, PR) is needed.

It is worth noting how many numbers are likely to be rejected before a prime number is found. A result 
from number theory, known as the prime number theorem, states that the primes near N are spaced on 
the average one every (ln N) integers. Thus, on average, one would have to test on the order of ln(N) 
integers before a prime is found. Actually, because all even integers can be immediately rejected, the 
correct figure is ln(N)/2. For example, if a prime on the order of magnitude of 2200 were sought, then 
about ln(2200)/2 = 70 trials would be needed to find a prime.

Having determined prime numbers p and q, the process of key generation is completed by selecting a 
value of e and calculating d or, alternatively, selecting a value of d and calculating e. Assuming the 
former, then we need to select an e such that gcd(φ(n), e) = 1 and then calculate d  e1(mod φ(n)). 
Fortunately, there is a single algorithm that will, at the same time, calculate the greatest common 
divisor of two integers and, if the gcd is 1, determine the inverse of one of the integers modulo the 
other. The algorithm, referred to as the extended Euclid's algorithm, is explained in Chapter 8. Thus, the 
procedure is to generate a series of random numbers, testing each against φ(n) until a number relatively 
prime to φ(n) is found. Again, we can ask the question: How many random numbers must we test to find 
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a usable number, that is, a number relatively prime to φ(n)? It can be shown easily that the probability 
that two random numbers are relatively prime is about 0.6; thus, very few tests would be needed to find 
a suitable integer (see Problem 8.2).

[Page 275]

The Security of RSA

Four possible approaches to attacking the RSA algorithm are as follows:

●     Brute force: This involves trying all possible private keys.
●     Mathematical attacks: There are several approaches, all equivalent in effort to factoring the 

product of two primes.
●     Timing attacks: These depend on the running time of the decryption algorithm.
●     Chosen ciphertext attacks: This type of attack exploits properties of the RSA algorithm.

The defense against the brute-force approach is the same for RSA as for other cryptosystems, namely, 
use a large key space. Thus, the larger the number of bits in d, the better. However, because the 
calculations involved, both in key generation and in encryption/decryption, are complex, the larger the 
size of the key, the slower the system will run.

In this subsection, we provide an overview of mathematical and timing attacks.

The Factoring Problem

We can identify three approaches to attacking RSA mathematically:

●     Factor n into its two prime factors. This enables calculation of φ(n) = (p 1) x (q 1), which, in 
turn, enables determination of d  e1 (mod φ(n)).

●     Determine φ(n) directly, without first determining p and q. Again, this enables determination of d 
 e1 (mod φ(n)).

●     Determine d directly, without first determining φ(n).

Most discussions of the cryptanalysis of RSA have focused on the task of factoring n into its two prime 
factors. Determining φ(n) given n is equivalent to factoring n [RIBE96]. With presently known 
algorithms, determining d given e and n appears to be at least as time-consuming as the factoring 
problem [KALI95]. Hence, we can use factoring performance as a benchmark against which to evaluate 
the security of RSA.

For a large n with large prime factors, factoring is a hard problem, but not as hard as it used to be. A 
striking illustration of this is the following. In 1977, the three inventors of RSA dared Scientific American 
readers to decode a cipher they printed in Martin Gardner's "Mathematical Games" column [GARD77]. 
They offered a $100 reward for the return of a plaintext sentence, an event they predicted might not 
occur for some 40 quadrillion years. In April of 1994, a group working over the Internet claimed the 
prize after only eight months of work [LEUT94]. This challenge used a public key size (length of n) of 
129 decimal digits, or around 428 bits. In the meantime, just as they had done for DES, RSA 
Laboratories had issued challenges for the RSA cipher with key sizes of 100, 110, 120, and so on, digits. 
The latest challenge to be met is the RSA-200 challenge with a key length of 200 decimal digits, or 
about 663 bits. Table 9.4 shows the results to date. The level of effort is measured in MIPS-years: a 
million-instructions-per-second processor running for one year, which is about 3 x 1013 instructions 
executed. A 1 GHz Pentium is about a 250-MIPS machine.
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Table 9.4. Progress in Factorization

Number of 
Decimal Digits

Approximate Number 
of Bits Date Achieved MIPS-years Algorithm

100 332 April 1991 7 Quadratic sieve

110 365 April 1992 75 Quadratic sieve

120 398 June 1993 830 Quadratic sieve

129 428 April 1994 5000 Quadratic sieve

130 431 April 1996 1000 Generalized number 
field sieve

140 465 February 1999 2000 Generalized number 
field sieve

155 512 August 1999 8000 Generalized number 
field sieve

160 530 April 2003 Lattice sieve

174 576 December 2003 Lattice sieve

200 663 May 2005 Lattice sieve

 
A striking fact about Table 9.4 concerns the method used. Until the mid-1990s, factoring attacks were 
made using an approach known as the quadratic sieve. The attack on RSA-130 used a newer algorithm, 
the generalized number field sieve (GNFS), and was able to factor a larger number than RSA-129 at only 
20% of the computing effort.

The threat to larger key sizes is twofold: the continuing increase in computing power, and the continuing 
refinement of factoring algorithms. We have seen that the move to a different algorithm resulted in a 
tremendous speedup. We can expect further refinements in the GNFS, and the use of an even better 
algorithm is also a possibility. In fact, a related algorithm, the special number field sieve (SNFS), can 
factor numbers with a specialized form considerably faster than the generalized number field sieve. 
Figure 9.8 compares the performance of the two algorithms. It is reasonable to expect a breakthrough 
that would enable a general factoring performance in about the same time as SNFS, or even better 
[ODLY95]. Thus, we need to be careful in choosing a key size for RSA. For the near future, a key size in 
the range of 1024 to 2048 bits seems reasonable.

Figure 9.8. MIPS-years Needed to Factor

(This item is displayed on page 277 in the print version) 

[View full size image]
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In addition to specifying the size of n, a number of other constraints have been suggested by 
researchers. To avoid values of n that may be factored more easily, the algorithm's inventors suggest 
the following constraints on p and q:

1.  

p and q should differ in length by only a few digits. Thus, for a 1024-bit key (309 decimal digits), 
both p and q should be on the order of magnitude of 1075 to 10100.

2.  

Both (p 1) and (q 1) should contain a large prime factor.

3.  
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gcd(p 1, q 1) should be small.

In addition, it has been demonstrated that if e < n and d < n¼, then d can be easily determined 
[WIEN90].

[Page 277]

Timing Attacks

If one needed yet another lesson about how difficult it is to assess the security of a cryptographic 
algorithm, the appearance of timing attacks provides a stunning one. Paul Kocher, a cryptographic 
consultant, demonstrated that a snooper can determine a private key by keeping track of how long a 
computer takes to decipher messages [KOCH96, KALI96b]. Timing attacks are applicable not just to 
RSA, but to other public-key cryptography systems. This attack is alarming for two reasons: It comes 
from a completely unexpected direction and it is a ciphertext-only attack.

A timing attack is somewhat analogous to a burglar guessing the combination of a safe by observing 
how long it takes for someone to turn the dial from number to number. We can explain the attack using 
the modular exponentiation algorithm of Figure 9.7, but the attack can be adapted to work with any 
implementation that does not run in fixed time. In this algorithm, modular exponentiation is 
accomplished bit by bit, with one modular multiplication performed at each iteration and an additional 
modular multiplication performed for each 1 bit.

[Page 278]

As Kocher points out in his paper, the attack is simplest to understand in an extreme case. Suppose the 
target system uses a modular multiplication function that is very fast in almost all cases but in a few 
cases takes much more time than an entire average modular exponentiation. The attack proceeds bit-by-
bit starting with the leftmost bit, bk. Suppose that the first j bits are known (to obtain the entire 

exponent, start with j = 0 and repeat the attack until the entire exponent is known). For a given 
ciphertext, the attacker can complete the first j iterations of the for loop. The operation of the 
subsequent step depends on the unknown exponent bit. If the bit is set, d  (d x a) mod n will be 
executed. For a few values of a and d, the modular multiplication will be extremely slow, and the 
attacker knows which these are. Therefore, if the observed time to execute the decryption algorithm is 
always slow when this particular iteration is slow with a 1 bit, then this bit is assumed to be 1. If a 
number of observed execution times for the entire algorithm are fast, then this bit is assumed to be 0.

In practice, modular exponentiation implementations do not have such extreme timing variations, in 
which the execution time of a single iteration can exceed the mean execution time of the entire 
algorithm. Nevertheless, there is enough variation to make this attack practical. For details, see 
[KOCH96].

Although the timing attack is a serious threat, there are simple countermeasures that can be used, 
including the following:

●     Constant exponentiation time: Ensure that all exponentiations take the same amount of time 
before returning a result. This is a simple fix but does degrade performance.

●     Random delay: Better performance could be achieved by adding a random delay to the 
exponentiation algorithm to confuse the timing attack. Kocher points out that if defenders don't 
add enough noise, attackers could still succeed by collecting additional measurements to 
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compensate for the random delays.
●     Blinding: Multiply the ciphertext by a random number before performing exponentiation. This 

process prevents the attacker from knowing what ciphertext bits are being processed inside the 
computer and therefore prevents the bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products. The private-key operation M 
= Cd mod n is implemented as follows:

1.  

Generate a secret random number r between 0 and n 1.

2.  

Compute C' = C(re) mod n, where e is the public exponent.

3.  

Compute M' = (C')d mod n with the ordinary RSA implementation.

4.  

Compute M = M'r1 mod n. In this equation, r1 is the multiplicative inverse of r mod n; see 
Chapter 8 for a discussion of this concept. It can be demonstrated that this is the correct result 
by observing that red mod n =r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

[Page 279]

Chosen Ciphertext Attack and Optimal Asymmetric Encryption Padding

The basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is defined as an attack 
in which adversary chooses a number of ciphertexts and is then given the corresponding plaintexts, 
decrypted with the target's private key. Thus, the adversary could select a plaintext, encrypt it with the 
target's public key and then be able to get the plaintext back by having it decrypted with the private 
key. Clearly, this provides the adversary with no new information. Instead, the adversary exploits 
properties of RSA and selects blocks of data that, when processed using the target's private key, yield 
information needed for cryptanalysis.

A simple example of a CCA against RSA takes advantage of the following property of RSA:

Equation 9-2 

 
We can decrypt C = Me using a CCA as follows.
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1.  

Compute X = (C x 2e) mod n.

2.  

Submit X as a chosen ciphertext and receive back Y = Xd mod n.

But now note the following:

X = (C mod n) x (2e mode n)

 = (Me mod n) x (2e mode n)

 = (2M)e mod n

 
Therefore, Y = (2M) mod n From this, we can deduce M. To overcome this simple attack, practical RSA-
based cryptosystems randomly pad the plaintext prior to encryption. This randomizes the ciphertext so 
that Equation (9.2) no longer holds. However, more sophisticated CCAs are possible and a simple 
padding with a random value has been shown to be insufficient to provide the desired security. To 
counter such attacks RSA Security Inc., a leading RSA vendor and former holder of the RSA patent, 
recommends modifying the plaintext using a procedure known as optimal asymmetric encryption 
padding (OAEP). A full discussion of the threats and OAEP are beyond our scope; see [POIN02] for an 
introduction and [BELL94a] for a thorough analysis. Here, we simply summarize the OAEP procedure.

Figure 9.9 depicts OAEP encryption. As a first step the message M to be encrypted is padded. A set of 

optional parameters P is passed through a hash function H.
[6]

 The output is then padded with zeros to 
get the desired length in the overall data block (DB). Next, a random seed is generated and passed 
through another hash function, called the mask generating function (MGF). The resulting hash value is 
bit-by-bit XORed with DB to produce a maskedDB. The maskedDB is in turn passed through the MGF to 
form a hash that is XORed with the seed to produce the masked seed. The concatenation of the 
maskedseed and the maskedDB forms the encoded message EM. Note that the EM includes the padded 
message, masked by the seed, and the seed, masked by the maskedDB. The EM is then encrypted using 
RSA.

[6] A hash function maps a variable-length data block or message into a fixed-length value called a hash code. Hash functions 
are discussed in depth in Chapters 11 and 12.
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Figure 9.9. Encryption Using Optimal Assymetric Encryption Padding (OAEP)
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9.3. Recommended Reading and Web Sites

The recommended treatments of encryption listed in Chapter 3 cover public-key as well as symmetric 
encryption.

[DIFF88] describes in detail the several attempts to devise secure two-key cryptoalgorithms and the 
gradual evolution of a variety of protocols based on them. [CORM01] provides a concise but complete 
and readable summary of all of the algorithms relevant to the verification, computation, and 
cryptanalysis of RSA. [BONE99] discusses various cryptanalytic attacks on RSA. A more recent 
discussion is [SHAM03].
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BONE99 Boneh, D. "Twenty Years of Attacks on the RSA Cryptosystem." Notices of the 
American Mathematical Society, February 1999.

CORM01 Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. Introduction to 
Algorithms. Cambridge, MA: MIT Press, 2001.

DIFF88 Diffie, W. "The First Ten Years of Public-Key Cryptography." Proceedings of the 
IEEE, May 1988. Reprinted in [SIMM92].

SHAM03 Shamir, A., and Tromer, E. "On the Cost of Factoring RSA-1024." 
CryptoBytes, Summer 2003. http://www.rsasecurity.com/rsalabs

 
Recommended Web Site

●     RSA Laboratories: Extensive collection of technical material on RSA and other topics in 
cryptography
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9.4. Key Terms, Review Questions, and Problems

Key Terms

chosen ciphertext attack (CCA)

digital signature

key exchange

one-way function

optimal asymmetric encryption padding (OAEP)

private key

public key

public key cryptography

public key cryptosystems

public key encryption

RSA

time complexity

timing attack

trapdoor one-way function

Review Questions

9.1 What are the principal elements of a public-key cryptosystem?

9.2 What are the roles of the public and private key?

9.3 What are three broad categories of applications of public-key cryptosystems?

9.4 What requirements must a public key cryptosystems fulfill to be a secure algorithm?

9.5 What is a one-way function?

9.6 What is a trapdoor one-way function?
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9.7 Describe in general terms an efficient procedure for picking a prime number.

Problems

9.1 Prior to the discovery of any specific public-key schemes, such as RSA, an existence proof was 
developed whose purpose was to demonstrate that public-key encryption is possible in theory. 
Consider the functions f1(x1) = z1; f2(x2, y2) = z2; f3(x3, y3) = z3, where all values are 

integers with 1 < xi, yi, zi  N. Function f1 can be represented by a vector M1 of length N, in 

which the kth entry is the value of f1(k). Similarly, f2 and f3 can be represented by N x N 

matrices M2 and M3. The intent is to represent the encryption/decryption process by table 
look-ups for tables with very large values of N. Such tables would be impractically huge but 
could, in principle, be constructed. The scheme works as follows: construct M1 with a random 
permutation of all integers between 1 and N; that is, each integer appears exactly once in M1. 
Construct M2 so that each row contains a random permutation of the first N integers. Finally, 
fill in M3 to satisfy the following condition:
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f3(f2(f1(k),p),k) = p
for all k, p with 1  k, p  N

 
In words,

1.  

M1 takes an input k and produces an output x.

2.  

M2 takes inputs x and p giving output z.

3.  

M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.

a.  

It should be clear that it is possible to construct M3 to satisfy the preceding condition. 
As an example, fill in M3 for the following simple case:
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Convention: The ith element of M1 corresponds to k = i. The ith row of M2 corresponds 
x = i; to the jth column of M2 corresponds to p = j. The ith row of M3 corresponds to z 
= i; the jth column of M3 corresponds to k = j.

b.  

Describe the use of this set of tables to perform encryption and decryption between 
two users.

c.  

Argue that this is a secure scheme.

9.2 Perform encryption and decryption using the RSA algorithm, as in Figure 9.6, for the following:

1.  

p = 3; q = 11, e = 7; M = 5

2.  

p = 5; q = 11, e = 3; M = 9

3.  

p = 7; q = 11, e = 17; M = 8

4.  

p = 11; q = 13, e = 11; M = 7

5.  

p = 17; q = 31, e = 7; M = 2. Hint: Decryption is not as hard as you think; use some 
finesse.

9.3 In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user whose 
public key is e = 5, n = 35. What is the plaintext M?

9.4 In an RSA system, the public key of a given user is e = 31, n = 3599. What is the private key 
of this user? Hint: First use trail and error to determine p and q; then use the extended 
Euclidean algorithm to find the multiplicative inverse of 31 modulo φ(n).
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9.5 In using the RSA algorithm, if a small number of repeated encodings give back the plaintext, 
what is the likely cause?

9.6 Suppose we have a set of blocks encoded with the RSA algorithm and we don't have the 
private key. Assume n = pq, e is the public key. Suppose also someone tells us they know one 
of the plaintext blocks has a common factor with n. Does this help us in any way?

9.7 In the RSA public-key encryption scheme, each user has a public key, e, and a private key, d. 
Suppose Bob leaks his private key. Rather than generating a new modulus, he decides to 
generate a new public and a new private key. Is this safe?

9.8 Suppose Bob uses the RSA cryptosystem with a very large modulus n for which the 
factorization cannot be found in a reasonable amount of time. Suppose Alice sends a message 
to Bob by representing each alphabetic character as an integer between 0 and 25(A  0,..., 
Z  25), and then encrypting each number separately using RSA with large e and large n. Is 
this method secure? If not, describe the most efficient attack against this encryption method.
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9.9 Using a spreadsheet (such as Excel), or a calculator, perform the described below operations. 
Document results of all intermediate modular multiplications. Determine a number of modular 
multiplications per each major transformation (such as encryption, decryption, primality 
testing, etc.).

a.  

Test all odd numbers in the range from 233 to 241 for primality using the Miller-Rabin 
test with base 2.

b.  

Encrypt the message block M = 2 using RSA with the following parameters: e = 23 and 
n = 233 x 241.

c.  

Compute a private key (d, p, q) corresponding to the given above public key (e, n).

d.  

Perform the decryption of the obtained ciphertext using two different methods:

1.  

without using the Chinese Remainder Theorem,

2.  

using the Chinese Remainder Theorem.
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9.10 Assume that you generate an authenticated and encrypted message by first applying the RSA 
transformation determined by your private key, and then enciphering the message using 
recipient's public key (note that you do NOT use hash function before the first 
transformation). Will this scheme work correctly [i.e., give the possibility to reconstruct the 
original message at the recipient's side, for all possible relations between the sender's 
modulus ns and the recipient's modulus nR (nS > nR, nS < nR, nS = nR)]? Explain your answer. 

In case your answer is "no," how would you correct this scheme?

9.11 "I want to tell you, Holmes," Dr. Watson's voice was enthusiastic, "that your recent activities 
in network security have increased my interest in cryptography. And just yesterday I found a 
way to make one-time pad encryption practical."

"Oh, really?" Holmes' face lost its sleepy look.

"Yes, Holmes. The idea is quite simple. For a given one-way function F, I generate a long 
pseudorandom sequence of elements by applying F to some standard sequence of arguments. 
The cryptanalyst is assumed to know F and the general nature of the sequence, which may be 
as simple as S, S + 1, S + 2,..., but not secret S. And due to the one-way nature of F no one 
is able to extract S given F(S + i) for some i, thus even if he somehow obtains a certain 
segment of the sequence, he will not be able to determine the rest."

"I am afraid, Watson, that your proposal isn't without flaws and at least it needs some 
additional conditions to be satisfied by F. Let's consider, for instance, the RSA encryption 
function, that is F(M) = MK mod N, K is secret. This function is believed to be one-way, but I 
wouldn't recommend its use, for example, on the sequence M = 2, 3, 4, 5, 6,..."

"But why, Holmes?" Dr. Watson apparently didn't understand. "Why do you think that the 

resulting sequence 2K mod N, 3K mod N, 4K mod N, ... is not appropriate for one-time pad 
encryption if K is kept secret?"

"Because it isat least partiallypredictable, dear Watson, even if K is kept secret. You have said 
that the cryptanalyst is assumed to know F and the general nature of the sequence. Now let's 
assume that he will obtain somehow a short segment of the output sequence. In crypto circles 
this assumption is generally considered to be a viable one. And for this output sequence, 
knowledge of just the first two elements will allow him to predict quite a lot of the next 
elements of the sequence, even if not all of them, thus this sequence can't be considered to 
be cryptographically strong. And with the knowledge of a longer segment he could predict 
even more of the next elements of the sequence. Look, knowing the general nature of the 

sequence and its first two elements 2K mod N and 3K mod N, you can easily compute its 
following elements."

Show how this can be done.

9.12 Show how RSA can be represented by matrices M1, M2, and M3 of Problem 9.1.
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9.13 Consider the following scheme:

1.  

Pick an odd number, E.

2.  

Pick two prime numbers, P and Q, where (P 1)(Q 1) 1 is evenly divisible by E.

3.  

Multiply P and Q to get N.

4.  

Calculate .

Is this scheme equivalent to RSA? Show why or why not.

9.14 Consider the following scheme by which B encrypts a message for A.

1.  

A chooses two large primes P and Q that are also relatively prime to (P 1) and (Q 1).

2.  

A publishes N = PQ as its public key.

3.  

A calculates P' and Q' such that PP'  1 (mod Q 1) and QQ'  1 (mod P 1).

4.  

B encrypts message M as C = MN mod N.

5.  

A finds M by solving M  CP' (mod Q) and M  CQ' (mod P).

a.  

Explain how this scheme works.

b.  

How does it differ from RSA?
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c.  

Is there any particular advantage to RSA compared to this scheme?

d.  

Show how this scheme can be represented by matrices M1, M2, and M3 of Problem 9.1.

9.15 "This is a very interesting case, Watson," Holmes said. "The young man loves a girl and she 
loves him too. However, her father is a strange fellow who insists that his would-be son in law 
must design a simple and secure protocol for an appropriate public-key cryptosystem he could 
use in his company's computer network. The young man came up with the following protocol 
for communication between two parties, for example, user A wishing to send message M to 
user B: (messages exchanged are in the format (sender's name, text, receiver's name)."

1.  

A sends B the following block: (A, E(PUb, [M, A]), B).

2.  

B acknowledges receipt by

sending to A the following block: (B, E(PUa, [M, B]), A).

"You can see that the protocol is really simple. But the girl's father claims that the young man 
has not satisfied his call for a simple protocol, because the proposal contains a certain 
redundancy and can be further simplified to the following:"

1.  

A sends B the block: (A, E(PUb, M), B).

2.  

B acknowledges receipt by sending to A the block: (B, E(PUa, M), A).

"On the basis of that, the girl's father refuses to allow his daughter to marry the young man, 
thus making them both unhappy. The young man was just here to ask me for help."

"Hmm, I don't see how you can help him." Watson was visibly unhappy with the idea that the 
sympathetic young man has to lose his love.

"Well, I think I could help. You know, Watson, redundancy is sometimes good to ensure the 
security of protocol. Thus, the simplification the girl's father has proposed could make the new 
protocol vulnerable to an attack the original protocol was able to resist," mused Holmes. "Yes, 
it is so, Watson. Look, all an adversary needs is to be one of the users of the network and to 
be able to intercept messages exchanged between A and B. Being a user of the network, he 
has his own public encryption key and is able to send his own messages to A or to B and to 
receive theirs. With the help of the simplified protocol, he could then obtain message M user A 
has previously sent to B using the following procedure:"

Complete the description.
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9.16 Use the fast exponentiation algorithm of Figure 9.7 to determine 5596 mod 1234. Show the 
steps involved in the computation.

9.17 Here is another realization of the fast exponentiation algorithm. Demonstrate that it is 
equivalent to the one in Figure 9.7.
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1.  

f  1; T  a; E  b

2.  

if odd(e) then f  d x T

3.  

E  |E/2|

4.  

T  T x T

5.  

if E > 0 then goto 2

6.  

output f

9.18 The problem illustrates a simple application of the chosen ciphertext attack. Bob intercepts a 
ciphertext C intended for Alice and encrypted with Alice's public key e. Bob want to obtain the 
original message M = Cd mod n. Bob chooses a random value r less than n and computes

Z = re mod n

X = ZC mod n

t = r1 mod n

 
Next, Bob gets Alice to authenticate (sign) X with her private key (as in Figure 9.3), thereby 
decrypting X. Alice returns Y = Xd mod n. Show how Bob can use the information now 
available to him to determine M.

9.19 Show the OAEP decoding operation, used for decryption, that corresponds to the encoding 
operation of Figure 9.9.
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9.20 Improve on algorithm P1 in Appendix 9B.

a.  

Develop an algorithm that requires 2n multiplications and n + 1 additions. Hint: xi+1 = 
xi x x.

b.  

Develop an algorithm that requires only n + 1 multiplications and n + 1 additions. 
Hint: P(x) = a0 + x x q(x), where q(x) is a polynomial of degree (n 1).

Note: The remaining problems concern the knapsack public-key algorithm described in 
Appendix F.

9.21 What items are in the knapsack in Figure F.1?

9.22 Perform encryption and decryption using the knapsack algorithm for the following:

a.  

a' = (1, 3, 5, 10); w = 7; m = 20; x = 1101

b.  

a' = (1, 3, 5, 11, 23, 46, 136, 263)); w = 203; m = 491; x = 11101000

c.  

a' = (2, 3, 6, 12, 25); w = 46; m = 53; x = 11101

d.  

a' = (15, 92, 108, 279, 563, 1172, 2243, 4468); w = 2393; m = 9291; x = 10110001

9.23

Why is it a requirement that 
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Appendix 9A Proof of the RSA Algorithm

The basic elements of the RSA algorithm can be summarized as follows. Given two prime numbers p and 
q, with n = pq and a message block M < n, two integers e and d are chosen such that

Med mod n = M

We state in Section 9.2, that the preceding relationship holds if e and d are multiplicative inverses 
modulo φ(n), where φ(n) is the Euler totient function. It is shown in Chapter 8 that for p, q prime, φ(n) = 
(p 1)(q 1). The relationship between e and d can be expressed as

ed mod φ(n) = 1

Another way to state this is that there is an integer k such that ed = kφ(n) + 1. Thus, we must show that

Equation 9-3 
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Basic Results

Before proving Equation (9.3), we summarize some basic results. In Chapter 4, we showed that a 
property of modular arithmetic is the following:

[(a mod n) x (b mod n)] mod n = (a x b) mod n

From this, it should be easy to see that if we have x mod n = 1 then x2 mod n 1 and for any integer y, 
we have xy mod n = 1. Similarly, if we have x mod n = 0, for any integer y, we have xy mod n = 0.

Another property of modular arithmetic is

[(a mod n) (b mod n)] mod n = (a b) mod n

The other result we need is Euler's theorem, which was developed in Chapter 8. If integers a and n are 
relatively prime, than aφ(n) mod n = 1.

Proof

First we show that Mk(p1)(q1)+1 mod p = M mod p. There are two cases to consider.
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Case 1: M and p are not relatively prime; that is, p divides M. In this case M mod p = 0 

and therefore Mk(p1)(q1)+1 mod p = 0. Thus, Mk(p1)(q1)+1 mod p = M mod p.

Case 2: If M and p are relatively prime, by Euler's theorem, Mφ(p) mod p = 1. We proceed 
as follows:

Mk(p1)(q1)+1 mod p = [(M)Mk(p1)(q1)] mod p  

 = [(M)(Mp1))k(q1) mod p  

 = [(M)(Mφ(p))k(q1) mod p  

 = (M mod p) x [(Mφ(p)) mod p]k(q1)  

 = (M mod p) x (1)k(q1) (by Euler's theorem)

 = M mod P  

 
We now observe that

[Mk(p1)(q1)+1 M] mod p [Mk(p1)(q1)+1 mod p] [M mod p] = 0

Thus, p divides [Mk(p1)(q1)+1 M]. By the same reasoning, we can show that q divides [Mk(p1)(q1)+1 M]. 
Because p and q are distinct primes, there must exist an integer r that satisfies

[Mk(p1)(q1)+1 M] = (pq)r = nr

Therefore, p divides [Mk(p1)(q1)+1 M], and so Mkφ(n)+1 mod n = Mk(p1)(q1)+1 mod n = M.
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Appendix 9B The Complexity of Algorithms

The central issue in assessing the resistance of an encryption algorithm to cryptanalysis is the amount of 
time that a given type of attack will take. Typically, one cannot be sure that one has found the most 
efficient attack algorithm. The most that one can say is that for a particular algorithm, the level of effort 
for an attack is of a particular order of magnitude. One can then compare that order of magnitude to the 
speed of current or predicted processors to determine the level of security of a particular algorithm.

A common measure of the efficiency of an algorithm is its time complexity. We define the time 
complexity of an algorithm to be f(n) if, for all n and all inputs of length n, the execution of the 
algorithm takes at most f(n) steps. Thus, for a given size of input and a given processor speed, the time 
complexity is an upper bound on the execution time.
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There are several ambiguities here. First, the definition of a step is not precise. A step could be a single 
operation of a Turing machine, a single processor machine instruction, a single high-level language 
machine instruction, and so on. However, these various definitions of step should all be related by 
simple multiplicative constants. For very large values of n, these constants are not important. What is 
important is how fast the relative execution time is growing. For example, if we are concerned about 
whether to use 50-digit (n = 1050) or 100-digit (n = 10100) keys for RSA, it is not necessary (or really 
possible) to know exactly how long it would take to break each size of key. Rather, we are interested in 
ballpark figures for level of effort and in knowing how much extra relative effort is required for the larger 
key size.

A second issue is that, generally speaking, we cannot pin down an exact formula for f(n). We can only 
approximate it. But again, we are primarily interested in the rate of change of f(n) as n becomes very 
large.

There is a standard mathematical notation, known as the "big-O" notation, for characterizing the time 
complexity of algorithms that is useful in this context. The definition is as follows: if and only if there 
exist two numbers a and M such that

Equation 9-4 

 
An example helps clarify the use of this notation. Suppose we wish to evaluate a general polynomial of 
the form

p(x) = anXn + an1Xn1 + ... + a1x + a0

The following simple-minded algorithm is from [POHL81]:
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algorithm P1;
    n, i, j: integer; x, polyval: real;
    a, S: array [0..100] of real;
    begin
       read(x, n);
       for i := 0 upto n do
       begin
          S[i] := 1; read(a[i]);
          for j := 1 upto i do S[i] := x x S[i];
          S[i] := a[i] x S[i]
       end;
       polyval := 0;
       for i := 0 upto n do polyval := polyval + S[i];
       write ('value at', x, 'is', polyval)
    end.

 
In this algorithm, each subexpression is evaluated separately. Each S[i] requires (i + 1) multiplications: 
i multiplications to compute S[i] and one to multiply by a[i]. Computing all n terms requires

 
multiplications. There are also (n + 1) additions, which we can ignore relative to the much larger 
number of multiplications. Thus, the time complexity of this algorithm is f(n) = (n + 2)(n + 1)/2. We 
now show that f(n) = O(n2). From the definition of Equation (9.4), we want to show that for a = 1 and 
M = 4, the relationship holds for g(n) = n2. We do this by induction on n. The relationship holds for n = 
4 because (4 + 2) (4 +1)/2 = 15 < 42 = 16. Now assume that it holds for all values of n up to k [i.e.,(k 
+ 2)(k + 1)/2 < k2. Then, with n = k + 1.
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Therefore, the result is true for n = k + 1.

In general, the big-O notation makes use of the term that grows the fastest. For example,

1.  

O[ax7 + 3x3 + sin(x)] O(ax7) = O(x7)
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2.  

O(en + an10) = O(en)

3.  

O(n! + n50) = O(n!)

There is much more to the big-O notation, with fascinating ramifications. For the interested reader, two 
of the best accounts are in [GRAH94] and [KNUT97].

An algorithm with an input of size n is said to be

●     Linear: If the running time is O(n)
●     Polynomial: If the running time is O(nt) for some constant t
●     Exponential: If the running time is O(th(n)) for some constant t and polynomial h(n)

Generally, a problem that can be solved in polynomial time is considered feasible, whereas anything 
worse than polynomial time, especially exponential time, is considered infeasible. But you must be 
careful with these terms. First, if the size of the input is small enough, even very complex algorithms 
become feasible. Suppose, for example, that you have a system that can execute operations per unit 
time. Table 9.5 shows the size of input that can be handled in one time unit for algorithms of various 
complexities. For algorithms of exponential or factorial time, only very small inputs can be 
accommodated.

Table 9.5. Level of Effort for 
Various Levels of Complexity

Complexity Size Operations

log2n 21012 = 103x1011 1012

N 1012 1012

n2 106 1012

n6 102 1012

22 39 1012

n! 15 1012

 
The second thing to be careful about is the way in which the input is characterized. For example, the 
complexity of cryptanalysis of an encryption algorithm can be characterized equally well in terms of the 
number of possible keys or the length of the key. For the Advanced Encryption Standard (AES), for 
example, the number of possible keys is 2128 and the length of the key is 128 bits. If we consider a 

single encryption to be a "step" and the number of possible keys to be N = 2n, then the time complexity 
of the algorithm is linear in terms of the number of keys [O(N)] but exponential in terms of the length of 
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the key [O(2n)].
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Chapter 10. Key Management; Other Public-Key 
Cryptosystems

10.1 Key Management

Distribution of Public Keys
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No Singhalese, whether man or woman, would venture out of the house without a bunch 
of keys in his hand, for without such a talisman he would fear that some devil might take 
advantage of his weak state to slip into his body.

The Golden Bough, Sir James George Frazer

Key Points

●     Public-key encryption schemes are secure only if the authenticity of the public key 
is assured. A public-key certificate scheme provides the necessary security.

●     A simple public-key algorithm is Diffie-Hellman key exchange. This protocol enables 
two users to establish a secret key using a public-key scheme based on discrete 
logarithms. The protocol is secure only if the authenticity of the two participants can 
be established.

●     Elliptic curve arithmetic can be used to develop a variety of elliptic curve 
cryptography (ECC) schemes, including key exchange, encryption, and digital 
signature.

●     For purposes of ECC, elliptic curve arithmetic involves the use of an elliptic curve 
equation defined over a finite field. The coefficients and variables in the equation 

are elements of a finite field. Schemes using Zp and GF(2m) have been developed.

 
This chapter continues our overview of public-key encryption. We examine key distribution and 
management for public-key systems, including a discussion of Diffie-Hellman key exchange. Finally, we 
provide an introduction to elliptic curve cryptography.
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[Page 290 (continued)]

10.1. Key Management

In Chapter 7, we examined the problem of the distribution of secret keys. One of the major roles of 
public-key encryption has been to address the problem of key distribution. There are actually two 
distinct aspects to the use of public-key cryptography in this regard:

●     The distribution of public keys
●     The use of public-key encryption to distribute secret keys

We examine each of these areas in turn.

[Page 291]

Distribution of Public Keys

Several techniques have been proposed for the distribution of public keys. Virtually all these proposals 
can be grouped into the following general schemes:

●     Public announcement
●     Publicly available directory
●     Public-key authority
●     Public-key certificates

Public Announcement of Public Keys

On the face of it, the point of public-key encryption is that the public key is public. Thus, if there is some 
broadly accepted public-key algorithm, such as RSA, any participant can send his or her public key to 
any other participant or broadcast the key to the community at large (Figure 10.1). For example, 
because of the growing popularity of PGP (pretty good privacy, discussed in Chapter 15), which makes 
use of RSA, many PGP users have adopted the practice of appending their public key to messages that 
they send to public forums, such as USENET newsgroups and Internet mailing lists.

Figure 10.1. Uncontrolled Public-Key Distribution

[View full size image]
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Although this approach is convenient, it has a major weakness. Anyone can forge such a public 
announcement. That is, some user could pretend to be user A and send a public key to another 
participant or broadcast such a public key. Until such time as user A discovers the forgery and alerts 
other participants, the forger is able to read all encrypted messages intended for A and can use the 
forged keys for authentication (see Figure 9.3).

Publicly Available Directory

A greater degree of security can be achieved by maintaining a publicly available dynamic directory of 
public keys. Maintenance and distribution of the public directory would have to be the responsibility of 
some trusted entity or organization (Figure 10.2). Such a scheme would include the following elements:

1.  

The authority maintains a directory with a {name, public key} entry for each participant.

2.  

Each participant registers a public key with the directory authority. Registration would have to be 
in person or by some form of secure authenticated communication.

[Page 292]
3.  

A participant may replace the existing key with a new one at any time, either because of the 
desire to replace a public key that has already been used for a large amount of data, or because 
the corresponding private key has been compromised in some way.

4.  

Participants could also access the directory electronically. For this purpose, secure, authenticated 
communication from the authority to the participant is mandatory.

Figure 10.2. Public-Key Publication
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[View full size image]

 
This scheme is clearly more secure than individual public announcements but still has vulnerabilities. If 
an adversary succeeds in obtaining or computing the private key of the directory authority, the 
adversary could authoritatively pass out counterfeit public keys and subsequently impersonate any 
participant and eavesdrop on messages sent to any participant. Another way to achieve the same end is 
for the adversary to tamper with the records kept by the authority.

Public-Key Authority

Stronger security for public-key distribution can be achieved by providing tighter control over the 
distribution of public keys from the directory. A typical scenario is illustrated in Figure 10.3, which is 
based on a figure in [POPE79]. As before, the scenario assumes that a central authority maintains a 
dynamic directory of public keys of all participants. In addition, each participant reliably knows a public 
key for the authority, with only the authority knowing the corresponding private key. The following steps 
(matched by number to Figure 10.3) occur:

1. A sends a timestamped message to the public-key authority containing a request for the current 
public key of B. 
 

2. The authority responds with a message that is encrypted using the authority's private key, PR
auth

 

Thus, A is able to decrypt the message using the authority's public key. Therefore, A is assured 
that the message originated with the authority. The message includes the following: 
 

●     B's public key, PU
b
 which A can use to encrypt messages destined for B

●     The original request, to enable A to match this response with the corresponding earlier 
request and to verify that the original request was not altered before reception by the 
authority

[Page 293]
●     The original timestamp, so A can determine that this is not an old message from the 

authority containing a key other than B's current public key

file:///D|/1/0131873164/ch10lev1sec1.html (3 von 10) [14.10.2007 09:41:02]

file:///D|/1/0131873164/images/10fig02_alt.jpg


Section 10.1.  Key Management

3. A stores B's public key and also uses it to encrypt a message to B containing an identifier of A 
(ID

A
) and a nonce (N1), which is used to identify this transaction uniquely. 

 
4, 
5. 

B retrieves A's public key from the authority in the same manner as A retrieved B's public key. 
 
At this point, public keys have been securely delivered to A and B, and they may begin their 
protected exchange. However, two additional steps are desirable: 
 

6. B sends a message to A encrypted with PU
a
 and containing A's nonce (N1) as well as a new nonce 

generated by B (N2) Because only B could have decrypted message (3), the presence of N1 in 

message (6) assures A that the correspondent is B. 
 

7. A returns N2, encrypted using B's public key, to assure B that its correspondent is A. 

 

Figure 10.3. Public-Key Distribution Scenario

[View full size image]

 
Thus, a total of seven messages are required. However, the initial four messages need be used only 
infrequently because both A and B can save the other's public key for future use, a technique known as 
caching. Periodically, a user should request fresh copies of the public keys of its correspondents to 
ensure currency.

Public-Key Certificates

The scenario of Figure 10.3 is attractive, yet it has some drawbacks. The public-key authority could be 
somewhat of a bottleneck in the system, for a user must appeal to the authority for a public key for 
every other user that it wishes to contact. As before, the directory of names and public keys maintained 
by the authority is vulnerable to tampering.
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An alternative approach, first suggested by Kohnfelder [KOHN78], is to use certificates that can be 
used by participants to exchange keys without contacting a public-key authority, in a way that is as 
reliable as if the keys were obtained directly from a public-key authority. In essence, a certificate 
consists of a public key plus an identifier of the key owner, with the whole block signed by a trusted 
third party. Typically, the third party is a certificate authority, such as a government agency or a 
financial institution, that is trusted by the user community. A user can present his or her public key to 
the authority in a secure manner, and obtain a certificate. The user can then publish the certificate. 
Anyone needed this user's public key can obtain the certificate and verify that it is valid by way of the 
attached trusted signature. A participant can also convey its key information to another by transmitting 
its certificate. Other participants can verify that the certificate was created by the authority. We can 
place the following requirements on this scheme:

1.  

Any participant can read a certificate to determine the name and public key of the certificate's 
owner.

2.  

Any participant can verify that the certificate originated from the certificate authority and is not 
counterfeit.

3.  

Only the certificate authority can create and update certificates.

These requirements are satisfied by the original proposal in [KOHN78]. Denning [DENN83] added the 
following additional requirement:

4.  

Any participant can verify the currency of the certificate.

A certificate scheme is illustrated in Figure 10.4. Each participant applies to the certificate authority, 
supplying a public key and requesting a certificate.

Figure 10.4. Exchange of Public-Key Certificates

[View full size image]
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Application must be in person or by some form of secure authenticated communication. For participant 
A, the authority provides a certificate of the form

C
A
 = E(PR

auth
, [T||IDA||PUa])

where PR
auth

 is the private key used by the authority and T is a timestamp. A may then pass this 

certificate on to any other participant, who reads and verifies the certificate as follows:

D(PUauth, CA) = D(PUauth, E(PRauth, [T||IDA||PUa])) = (T||IDA||PUa)

The recipient uses the authority's public key, PU
auth

 to decrypt the certificate. Because the certificate is 

readable only using the authority's public key, this verifies that the certificate came from the certificate 
authority. The elements ID

A
 and PU

a
 provide the recipient with the name and public key of the 

certificate's holder. The timestamp T validates the currency of the certificate. The timestamp counters 
the following scenario. A's private key is learned by an adversary. A generates a new private/public key 
pair and applies to the certificate authority for a new certificate. Meanwhile, the adversary replays the 
old certificate to B. If B then encrypts messages using the compromised old public key, the adversary 
can read those messages.

In this context, the compromise of a private key is comparable to the loss of a credit card. The owner 
cancels the credit card number but is at risk until all possible communicants are aware that the old 
credit card is obsolete. Thus, the timestamp serves as something like an expiration date. If a certificate 
is sufficiently old, it is assumed to be expired.

One scheme has become universally accepted for formatting public-key certificates: the X.509 standard. 
X.509 certificates are used in most network security applications, including IP security, secure sockets 
layer (SSL), secure electronic transactions (SET), and S/MIME, all of which are discussed in Part Two. 
X.509 is examined in detail in Chapter 14.
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Distribution of Secret Keys Using Public-Key Cryptography

Once public keys have been distributed or have become accessible, secure communication that thwarts 
eavesdropping (Figure 9.2), tampering (Figure 9.3), or both (Figure 9.4) is possible. However, few users 
will wish to make exclusive use of public-key encryption for communication because of the relatively 
slow data rates that can be achieved. Accordingly, public-key encryption provides for the distribution of 
secret keys to be used for conventional encryption.

Simple Secret Key Distribution

An extremely simple scheme was put forward by Merkle [MERK79], as illustrated in Figure 10.5. If A 
wishes to communicate with B, the following procedure is employed:

1. A generates a public/private key pair {PU
a
, PRa} and transmits a message to B consisting of PU

a
 

and an identifier of A, ID
A
. 

 
2. B generates a secret key, K

s
, and transmits it to A, encrypted with A's public key. 

 
3. A computes D(PR

a
, E(PU

a
, K

s
)) to recover the secret key. Because only A can decrypt the 

message, only A and B will know the identity of K
s
. 

 
4. A discards PU

a
 and PR

a
 and B discards PU

a
. 
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Figure 10.5. Simple Use of Public-Key Encryption to Establish a Session Key

[View full size image]

 
A and B can now securely communicate using conventional encryption and the session key K

s
. At the 

completion of the exchange, both A and B discard K
s
. Despite its simplicity, this is an attractive protocol. 

No keys exist before the start of the communication and none exist after the completion of 
communication. Thus, the risk of compromise of the keys is minimal. At the same time, the 
communication is secure from eavesdropping.

The protocol depicted in Figure 10.5 is insecure against an adversary who can intercept messages and 
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then either relay the intercepted message or substitute another message (see Figure 1.4c). Such an 
attack is known as a man-in-the-middle attack [RIVE84]. In this case, if an adversary, E, has control 
of the intervening communication channel, then E can compromise the communication in the following 
fashion without being detected:

1.  

A generates a public/private key pair {PU
a
, PR

a
} and transmits a message intended for B 

consisting of PU
a
 and an identifier of A, ID

A
.

2.  

E intercepts the message, creates its own public/private key pair {PU
e
, PR

e
} and transmits PU

e
||

ID
A
 to B.

3.  

B generates a secret key, K
s
, and transmits E(PU

e
, K

s
).

4.  

E intercepts the message, and learns K
s
 by computing D(PR

e
, E(PU

e
, K

s
)).

5.  

E transmits E(PU
a
, K

s
) to A.

The result is that both A and B know K
s
 and are unaware that K

s
 has also been revealed to E. A and B 

can now exchange messages using K
s
 E no longer actively interferes with the communications channel 

but simply eavesdrops. Knowing K
s
 E can decrypt all messages, and both A and B are unaware of the 

problem. Thus, this simple protocol is only useful in an environment where the only threat is 
eavesdropping.

Secret Key Distribution with Confidentiality and Authentication

Figure 10.6, based on an approach suggested in [NEED78], provides protection against both active and 
passive attacks. We begin at a point when it is assumed that A and B have exchanged public keys by 
one of the schemes described earlier in this section. Then the following steps occur:

1. A uses B's public key to encrypt a message to B containing an identifier of A (ID
A
) and a nonce 

(N1), which is used to identify this transaction uniquely. 
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2. B sends a message to A encrypted with PU
a
 and containing A's nonce (N1) as well as a new nonce 

generated by B (N2) Because only B could have decrypted message (1), the presence of N1 in 

message (2) assures A that the correspondent is B. 
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3. A returns N2 encrypted using B's public key, to assure B that its correspondent is A. 

 
4. A selects a secret key K

s
 and sends M = E(PU

b
, E(PR

a
, K

s
)) to B. Encryption of this message with 

B's public key ensures that only B can read it; encryption with A's private key ensures that only A 
could have sent it. 
 

5. B computes D(PU
a
, D(PR

b
, M)) to recover the secret key. 

 

Figure 10.6. Public-Key Distribution of Secret Keys

[View full size image]

 
Notice that the first three steps of this scheme are the same as the last three steps of Figure 10.3. The 
result is that this scheme ensures both confidentiality and authentication in the exchange of a secret key.

A Hybrid Scheme

Yet another way to use public-key encryption to distribute secret keys is a hybrid approach in use on 
IBM mainframes [LE93]. This scheme retains the use of a key distribution center (KDC) that shares a 
secret master key with each user and distributes secret session keys encrypted with the master key. A 
public key scheme is used to distribute the master keys. The following rationale is provided for using 
this three-level approach:

●     Performance: There are many applications, especially transaction-oriented applications, in 
which the session keys change frequently. Distribution of session keys by public-key encryption 
could degrade overall system performance because of the relatively high computational load of 
public-key encryption and decryption. With a three-level hierarchy, public-key encryption is used 
only occasionally to update the master key between a user and the KDC.

●     Backward compatibility: The hybrid scheme is easily overlaid on an existing KDC scheme, with 
minimal disruption or software changes.
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The addition of a public-key layer provides a secure, efficient means of distributing master keys. This is 
an advantage in a configuration in which a single KDC serves a widely distributed set of users.
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10.2. Diffie-Hellman Key Exchange

The first published public-key algorithm appeared in the seminal paper by Diffie and Hellman that 
defined public-key cryptography [DIFF76b] and is generally referred to as Diffie-Hellman key exchange.
[1]

 A number of commercial products employ this key exchange technique.

[1] Williamson of Britain's CESG published the identical scheme a few months earlier in a classified document [WILL76] and 
claims to have discovered it several years prior to that; see [ELLI99] for a discussion.

The purpose of the algorithm is to enable two users to securely exchange a key that can then be used 
for subsequent encryption of messages. The algorithm itself is limited to the exchange of secret values.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete 
logarithms. Briefly, we can define the discrete logarithm in the following way. First, we define a primitive 
root of a prime number p as one whose powers modulo p generate all the integers from 1 to p 1. That 
is, if a is a primitive root of the prime number p, then the numbers

a mod p, a2 mod p,..., ap1 mod p

are distinct and consist of the integers from 1 through p 1 in some permutation.

For any integer b and a primitive root a of prime number p, we can find a unique exponent i such that

b  ai (mod p) where 0  i  (p 1)

The exponent i is referred to as the discrete logarithm of b for the base a, mod p. We express this value 
as dlog

a,p
 (b). See Chapter 8 for an extended discussion of discrete logarithms.

The Algorithm

Figure 10.7 summarizes the Diffie-Hellman key exchange algorithm. For this scheme, there are two 
publicly known numbers: a prime number q and an integer that is a primitive root of q. Suppose the 

users A and B wish to exchange a key. User A selects a random integer X
A
 < q and computes Y

A
 = αXA

 

mod q. Similarly, user B independently selects a random integer X
A
 < q and computes Y

B
 = αXB

 mod q. 

Each side keeps the X value private and makes the Y value available publicly to the other side. User A 

computes the key as K = (Y
B
)X

A mod q and user B computes the key as K = (Y
A
)XB

 mod q. These two 

calculations produce identical results:

K = (Y
B
)XA

 mod q  
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 = (αXB
 mod q)XA

 mod q  

 = (αXB
)XA

 mod q by the rules of modular arithmetic

 = (αXB XA
 mod q  

 = (αXA
)XB

 mod q  

 = (αXA
 mod q)  

 = (αXA
 mod q)XB

 mod q  

 = (Y
A
)XB

 mod q  
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Figure 10.7. The Diffie-Hellman Key Exchange Algorithm
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The result is that the two sides have exchanged a secret value. Furthermore, because X

A
 and X

B
 are 

private, an adversary only has the following ingredients to work with: q, α, Y
A
, and Y

B
. Thus, the 

adversary is forced to take a discrete logarithm to determine the key. For example, to determine the 
private key of user B, an adversary must compute

XB = dlogα,q
 (Y

B
)

The adversary can then calculate the key K in the same manner as user B calculates it.

The security of the Diffie-Hellman key exchange lies in the fact that, while it is relatively easy to 
calculate exponentials modulo a prime, it is very difficult to calculate discrete logarithms. For large 
primes, the latter task is considered infeasible.

Here is an example. Key exchange is based on the use of the prime number q = 353 and a primitive 
root of 353, in this case α = 3. A and B select secret keys X

A
 = 97 and X

B
 = 233, respectively. Each 

computes its public key:

A computes Y
A = 397 mod 353 = 40.

B computes Y
B = 3233 mod 353 = 248.
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After they exchange public keys, each can compute the common secret key:

A computes K = (Y
B
)X

A mod 353 = 24897 mod 353 =160.

B computes K = (YA)X
E mod 353 = 40233 mod 353 = 160.

 
We assume an attacker would have available the following information:
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q = 353; α = 3; Y
A
 = 40; Y

B
 = 248

In this simple example, it would be possible by brute force to determine the secret key 160. In 

particular, an attacker E can determine the common key by discovering a solution to the equation 3a 

mod 353 = 40 or the equation 3b mod 353 = 248. The brute-force approach is to calculate powers of 3 
modulo 353, stopping when the result equals either 40 or 248. The desired answer is reached with the 

exponent value of 97, which provides 397 mod 353 = 40.

With larger numbers, the problem becomes impractical.

Key Exchange Protocols

Figure 10.8 shows a simple protocol that makes use of the Diffie-Hellman calculation. Suppose that user 
A wishes to set up a connection with user B and use a secret key to encrypt messages on that 
connection. User A can generate a one-time private key X

A
, calculate Y

A
, and send that to user B. User 

B responds by generating a private value X
B
 calculating Y

B
, and sending Y

B
 to user A. Both users can 

now calculate the key. The necessary public values q and α would need to be known ahead of time. 
Alternatively, user A could pick values for q and α and include those in the first message.

Figure 10.8. Diffie-Hellman Key Exchange

[View full size image]

 
As an example of another use of the Diffie-Hellman algorithm, suppose that a group of users (e.g., all 
users on a LAN) each generate a long-lasting private value X

i
 (for user i) and calculate a public value Y

i
. 

These public values, together with global public values for q and α, are stored in some central directory. 
At any time, user j can access user i's public value, calculate a secret key, and use that to send an 
encrypted message to user A. If the central directory is trusted, then this form of communication 
provides both confidentiality and a degree of authentication. Because only i and j can determine the key, 
no other user can read the message (confidentiality). Recipient i knows that only user j could have 
created a message using this key (authentication). However, the technique does not protect against 
replay attacks.
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Man-in-the-Middle Attack

The protocol depicted in Figure 10.8 is insecure against a man-in-the-middle attack. Suppose Alice and 
Bob wish to exchange keys, and Darth is the adversary. The attack proceeds as follows:

1.  

Darth prepares for the attack by generating two random private keys X
D1 and X

D2 and then 

computing the corresponding public keys Y
D1 and Y

D2.

2.  

Alice transmits Y
A
 to Bob.

3.  

Darth intercepts Y
A
 and transmits Y

D1 to Bob. Darth also calculates K2 = (Y
A
)X

D2 mod q.

4.  

Bob receives Y
D1 and calculates K1 = (Y

D1)
X

E mod q.

5.  

Bob transmits X
A
 to Alice.

6.  

Darth intercepts X
A
 and transmits Y

D2
 to Alice. Darth calculates K1 = (Y

B
)X

D1 mod q.

7.  

Alice receives Y
D2

 and calculates K2 = (Y
D2

)X
A mod q.

At this point, Bob and Alice think that they share a secret key, but instead Bob and Darth share secret 
key K1 and Alice and Darth share secret key K2. All future communication between Bob and Alice is 
compromised in the following way:

1.  
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Alice sends an encrypted message M: E(K2, M).

2.  

Darth intercepts the encrypted message and decrypts it, to recover M.

3.  

Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message. In the first case, Darth simply 
wants to eavesdrop on the communication without altering it. In the second case, Darth wants to 
modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it does not authenticate the 
participants. This vulnerability can be overcome with the use of digital signatures and public-key 
certificates; these topics are explored in Chapters 13 and 14.
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[Page 301 (continued)]

10.3. Elliptic Curve Arithmetic

Most of the products and standards that use public-key cryptography for encryption and digital 
signatures use RSA. As we have seen, the key length for secure RSA use has increased over recent 
years, and this has put a heavier processing load on applications using RSA. This burden has 
ramifications, especially for electronic commerce sites that conduct large numbers of secure 
transactions. Recently, a competing system has begun to challenge RSA: elliptic curve cryptography 
(ECC). Already, ECC is showing up in standardization efforts, including the IEEE P1363 Standard for 
Public-Key Cryptography.
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The principal attraction of ECC, compared to RSA, is that it appears to offer equal security for a far 
smaller key size, thereby reducing processing overhead. On the other hand, although the theory of ECC 
has been around for some time, it is only recently that products have begun to appear and that there 
has been sustained cryptanalytic interest in probing for weaknesses. Accordingly, the confidence level in 
ECC is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie-Hellman, and a full mathematical 
description is beyond the scope of this book. This section and the next give some background on elliptic 
curves and ECC. We begin with a brief review of the concept of abelian group. Next, we examine the 
concept of elliptic curves defined over the real numbers. This is followed by a look at elliptic curves 
defined over finite fields. Finally, we are able to examine elliptic curve ciphers.

The reader may wish to review the material on finite fields in Chapter 4 before proceeding.

Abelian Groups

Recall from Chapter 4, that an abelian group G, sometimes denoted by {G, • }, is a set of elements 
with a binary operation, denoted by •, that associates to each ordered pair (a, b) of elements in G an 

element (a • b) in G, such that the following axioms are obeyed:
[2]

[2] The operator • is generic and can refer to addition, multiplication, or some other mathematical operation.

(A1) Closure: If a and b belong to G, then a • b is also in G.

(A2) Associative: a • (b • c) = (a • b) • c for all a, b, c in G.

(A3) Identity element: There is an element e in G such that a • e = e • a = a for all a in G.

(A4) Inverse element: For each a in G there is an element a' in G such that a • a' = a' • a = e.

(A5) Commutative: a • b = b • a for all a, b in G.

 
A number of public-key ciphers are based on the use of an abelian group. For example, Diffie-Hellman 

file:///D|/1/0131873164/ch10lev1sec3.html (1 von 13) [14.10.2007 09:41:05]

file:///D|/1/0131873164/6991536.html


Section 10.3.  Elliptic Curve Arithmetic

key exchange involves multiplying pairs of nonzero integers modulo a prime number q. Keys are 
generated by exponentiation over the group, with exponentiation defined as repeated multiplication. For 

example, ak mod q =  mod q. To attack Diffie-Hellman, the attacker 

must determine k given a and ak; this is the discrete log problem.

For elliptic curve cryptography, an operation over elliptic curves, called addition, is used. Multiplication is 

defined by repeated addition. For example, , where the addition is 
performed over an elliptic

curve. Cryptanalysis involves determining k given a and (a x k).

[Page 303]

An elliptic curve is defined by an equation in two variables, with coefficients. For cryptography, the 
variables and coefficients are restricted to elements in a finite field, which results in the definition of a 
finite abelian group. Before looking at this, we first look at elliptic curves in which the variables and 
coefficients are real numbers. This case is perhaps easier to visualize.

Elliptic Curves over Real Numbers

Elliptic curves are not ellipses. They are so named because they are described by cubic equations, 
similar to those used for calculating the circumference of an ellipse. In general, cubic equations for 
elliptic curves take the form

y2 + axy + by = x3 + cx2 + dx + e

where a, b, c, d, and e are real numbers and x and y take on values in the real numbers.
[3]

 For our 
purpose, it is sufficient to limit ourselves to equations of the form

[3] Note that x and y are true variables, which take on values. This is in contrast to our discussion of polynomial rings and 
fields in Chapter 4, where x was treated as an indeterminate.

Equation 10-1 

 
Such equations are said to be cubic, or of degree 3, because the highest exponent they contain is a 3. 
Also included in the definition of an elliptic curve is a single element denoted O and called the point at 
infinity or the zero point, which we discuss subsequently. To plot such a curve, we need to compute
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For given values of a and b, the plot consists of positive and negative values of y for each value of x. 
Thus each curve is symmetric about y = 0. Figure 10.9 shows two examples of elliptic curves. As you 
can see, the formula sometimes produces weird-looking curves.

Figure 10.9. Example of Elliptic Curves

(This item is displayed on page 304 in the print version) 
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Now, consider the set of points E(a, b) consisting of all of the points (x, y) that satisfy Equation (10.1) 
together with the element O. Using a different value of the pair (a, b) results in a different set E(a, b). 
Using this terminology, the two curves in Figure 10.9 depict the sets E(1,0) and E(1, 1), respectively.

Geometric Description of Addition

It can be shown that a group can be defined based on the set E(a, b) for specific values of a and b in 
Equation (10.1), provided the following condition is met:

Equation 10-2 

 
To define the group, we must define an operation, called addition and denoted by +, for the set E(a, b), 
where a and b satisfy Equation (10.2). In geometric terms, the rules for addition can be stated as 
follows: If three points on an elliptic curve lie on a straight line, their sum is O. From this definition, we 
can define the rules of addition over an elliptic curve:

1.  

O serves as the additive identity. Thus O = O; for any point P on the elliptic curve, P + O = P. In 

what follows, we assume P  O and Q  O.

[Page 304]
2.  

The negative of a point P is the point with the same x coordinate but the negative of the y 
coordinate; that is, if P = (x, y), then P = (x, y). Note that these two points can be joined by a 
vertical line. Note that P + (P) = P P = O.

3.  

To add two points P and Q with different x coordinates, draw a straight line between them and 
find the third point of intersection R. It is easily seen that there is a unique point R that is the 
point of intersection (unless the line is tangent to the curve at either P or Q, in which case we 
take R = P or R = Q, respectively). To form a group structure, we need to define addition on 
these three points as follows: P + Q = R. That is, we define P + Q to be the mirror image (with 
respect to the x axis) of the third point of intersection. Figure 10.9 illustrates this construction.

[Page 305]
4.  
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The geometric interpretation of the preceding item also applies to two points, P and P, with the 
same x coordinate. The points are joined by a vertical line, which can be viewed as also 
intersecting the curve at the infinity point. We therefore have P + ( P) = O, consistent with item 
(2).

5.  

To double a point Q, draw the tangent line and find the other point of intersection S. Then Q + Q 
= 2Q = S.

With the preceding list of rules, it can be shown that the set E(a, b) is an abelian group.

Algebraic Description of Addition

In this subsection we present some results that enable calculation of additions over elliptic curves.
[4]

 
For two distinct points P = (x

P
, y

P
) and Q = (x

Q
, y

Q
) that are not negatives of each other, the slope of 

the line l that joins them is ∆ = (y
Q
 y

P
). There is exactly one other point where l intersects the elliptic 

curve, and that is the negative of the sum of P and Q. After some algebraic manipulation, we can 
express the sum R = P + Q as follows:

[4] For derivations of these results, see [KOBL94] or other mathematical treatments of elliptic curves.

Equation 10-3 

 
We also need to be able to add a point to itself: P + P = 2P = R. When y

P
  0, the expressions are

Equation 10-4 

 
Elliptic Curves over Zp

Elliptic curve cryptography makes use of elliptic curves in which the variables and coefficients are all 
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restricted to elements of a finite field. Two families of elliptic curves are used in cryptographic 

applications: prime curves over Z
p
 and binary curves over GF(2m). For a prime curve over Z

p
, we use a 

cubic equation in which the variables and coefficients all take on values in the set of integers from 0 
through p 1 and in which calculations are performed modulo p. For a binary curve defined over GF

(2m), the variables and coefficients all take on values in GF(2n) and in calculations are performed over 

GF(2n). [FERN99] points out that prime curves are best for software applications, because the extended 
bit-fiddling operations needed by binary curves are not required; and that binary curves are best for 
hardware applications, where it takes remarkably few logic gates to create a powerful, fast 
cryptosystem. We examine these two families in this section and the next.

There is no obvious geometric interpretation of elliptic curve arithmetic over finite fields. The algebraic 
interpretation used for elliptic curve arithmetic over real numbers does readily carry over, and this is the 
approach we take.

[Page 306]

For elliptic curves over Z
p
, as with real numbers, we limit ourselves to equations of the form of Equation 

(10.1), but in this case with coefficients and variables limited to Z
p
:

Equation 10-5 

 
For example, Equation (10.5) is satisfied for a = 1, b = 1, x = 9, y = 9, y = 7, p = 23:

72 mod 23 = (93 + 9 + 1) mod 23

49 mod 23 = 739 mod 23

3 = 3

 
Now consider the set E

p
 (a, b) consisting of all pairs of integers (x, y) that satisfy Equation (10.5), 

together with a point at infinity O. The coefficients a and b and the variables x and y are all elements of 
Z

p
.

For example, let p = 23 and consider the elliptic curve y2 = x3 + x + 1. In this case, a = b = 1. Note 
that this equation is the same as that of Figure 10.9b. The figure shows a continuous curve with all of 
the real points that satisfy the equation. For the set E23(1, 1), we are only interested in the nonnegative 

integers in the quadrant from (0, 0) through (p 1, p 1) that satisfy the equation mod p. Table 10.1 lists 
the points (other than O) that are part of E23(1,1). Figure 10.10 plots the points of E23(1,1); note that 

the points, with one exception, are symmetric about y = 11.5.
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Table 10.1. Points on 
the Elliptic Curve E23

(1,1)

(0, 1) (6, 4) (12, 19)

(0, 22) (6, 19) (13, 7)

(1, 7) (7, 11) (13, 16)

(1, 16) (7, 12) (17, 3)

(3, 10) (9, 7) (17, 20)

(3, 13) (9, 16) (18, 3)

(4, 0) (11, 3) (18, 20)

(5, 4) (11, 20) (19, 5)

(5, 19) (12, 4) (19, 18)

 
Figure 10.10. The Elliptic Curve E23(1,1)

(This item is displayed on page 307 in the print version) 
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It can be shown that a finite abelian group can be defined based on the set E

p
(a, b) provided that (x3 + 

ax + b) mod p has no repeated factors. This is equivalent to the condition

Equation 10-6 

 
Note that Equation (10.6) has the same form as Equation (10.2).

The rules for addition over E
p
(a, b) correspond to the algebraic technique described for elliptic curves 

defined over real number. For all points P, Q  Ep(a, b);

1.  

P + O = P.
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2.  

If P = (xP, yP
) then P + (x

P
, y

P
) = O. The point (x

P
, y

P
) is the negative of P, denoted as P. For 

example, in E23(1,1), for P = (13,7), we have P = (13, 7). But 7 mod 23 = 16. Therefore, P = 

(13, 16), which is also in E23(1,1).

[Page 307]
3.  

If P = (x
P
, y

Q
) and Q = (x

Q
, y

Q
) with P  Q, then R = P + Q = (x

R
, y

R
) is determined by the 

following rules:

x
R
 = (λ2 x

P
 x

Q
) mod p

y
R
 = (λ(x

P
 x

R
) y

P
) mod p

where

 
4.  

Multiplication is defined as repeated addition; for example, 4P = P + P + P + P.

For example, let P = (3,10) and Q = (9,7) in E23(1,1). Then

 
x

R
 = (112 3 9) mod 23 = 17

y
R
 = (11(3 17) 10) mod 23 = 164 mod 23 = 20
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[Page 308]

So P + Q = (17, 20). To find 2P,

 
The last step in the preceding equation involves taking the multiplicative inverse of 4 in Z23. This can be 

done using the extended Euclidean algorithm defined in Section 4.4. To confirm, note that (6 x 4) mod 
23 = 24 mod 23 = 1.

xR = (62 3 3) mod 23 = 30 mod 23 = 7

y
R
 = (6(3 7) 10) mod 23 = ( 34) mod 23 = 12

and 2P = (7, 12).

For determining the security of various elliptic curve ciphers, it is of some interest to know the number 
the number of points in a finite abelian group defined over an elliptic curve. In the case of the finite 
group E

p
(a,b), the number of points N is bounded by

 
Note that the number of points in E

p
(a, b) is approximately equal to the number of elements in Zp, 

namely p elements.

Elliptic Curves over GF(2m)

Recall from Chapter 4 that a finite field GF(2m) consists of 2m elements, together with addition and 

multiplication operations that can be defined over polynomials. For elliptic curves over GF(2m), we use a 

cubic equation in which the variables and coefficients all take on values in GF(2m), for some number m, 

and in which calculations are performed using the rules of arithmetic in GF(2m).

It turns out that the form of cubic equation appropriate for cryptographic applications for elliptic curves 

is somewhat different for GF(2m) than for Z
p
. The form is

Equation 10-7 
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where it is understood that the variables x and y and the coefficients a and b are elements of GF(2m) of 

and that calculations are performed in GF(2m).

Now consider the set E
2

m(a, b) consisting of all pairs of integers (x, y) that satisfy Equation (10.7), 

together with a point at infinity O.

For example, let us use the finite field GF(24) with the irreducible polynomial f(x) = x4 + x + 1. This 
yields a generator that satisfies f(g) = 0, with a value of g4 = g + 1, or in binary 0010. We can develop 
the powers of g as follows:

g0 = 0001 g4 = 0011 g8 = 0101 g12 = 1111

g1 = 0010 g5 = 0110 g9 = 1010 g13 = 1101

g2 = 0100 g6 = 1100 g10 = 0111 g14 = 1001

g3 = 1000 g7 = 1011 g11 = 1110 g15 = 0001

 
For example, g5 = (g4)(g) = g2 + g = 0110.

[Page 309]

Now consider the elliptic curve y2 + xy = x3 + g4x2 + 1. In this case a = g4 and b = g0 = 1. One point 
that satisfies this equation is (g5, g3):

(g3)2 + (g5)(g3) = (g5)3 + (g4)(g5)2 + 1

g6 + g8 = g15 + g14 + 1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001

Table 10.2 lists the points (other than O) that are part of E24(g4, 1). Figure 10.11 plots the points of E24

(g4, 1).

Table 10.2. Points on the 
Elliptic Curve E24 (g4, 1)

(0, 1) (g5, g3) (g9, g13)

(1, g6) (g5, g11) (g10, g)

(1, g13) g6, g8) (g10, g8)
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(g3, g8) (g6, g14) (g12,0)

(g3, g13) (g9, g10) (g12, g12)

 
Figure 10.11. The Elliptic Curve E24(g4, 1)

 
It can be shown that a finite abelian group can be defined based on the set E2m

(a, b), provided that b 

 0. The rules for addition can be stated as follows. For all points P, Q  E2m(a, b):

1.  

P + O = P.

2.  

file:///D|/1/0131873164/ch10lev1sec3.html (12 von 13) [14.10.2007 09:41:05]



Section 10.3.  Elliptic Curve Arithmetic

If P = (x
P
, y

P
), then P + (x

P
, x

p
 + y

P
) = O. The point (xP, xP

 + y
P
) is the negative of P, denoted 

as P.
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3.  

If P = (x
P
, y

P
) and Q = (x

Q
, y

Q
) with P  Q and P  Q, then R = P + Q = (x

R
, y

R
) is 

determined by the following rules:

x
R
 = λ2 + λ + x

P
 + x

Q
 + a

y
R
 = λ(x

P
 + x

R
) + x

R
 + y

P

where

 
4.  

If = (x
P
, y

P
) then R = 2P = (x

R
, y

R
) is determined by the following rules:

 
where

 
 

  

file:///D|/1/0131873164/ch10lev1sec3.html (13 von 13) [14.10.2007 09:41:05]

file:///D|/1/0131873164/6991536.html


Section 10.4.  Elliptic Curve Cryptography
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10.4. Elliptic Curve Cryptography

The addition operation in ECC is the counterpart of modular multiplication in RSA, and multiple addition 
is the counterpart of modular exponentiation. To form a cryptographic system using elliptic curves, we 
need to find a "hard problem" corresponding to factoring the product of two primes or taking the 
discrete logarithm.

Consider the equation Q = kP where Q, P  E
p
(a, b) and k < p. It is relatively easy to calculate Q given 

k and P, but it is relatively hard to determine k given Q and P. This is called the discrete logarithm 
problem for elliptic curves.

We give an example taken from the Certicom Web site (www.certicom.com). Consider the group E23

(9, 17). This is the group defined by the equation y2 mod 23 = (x3 + 9x + 17) mod 23. What is the 
discrete logarithm k of Q = (4, 5) to the base P = (16.5)? The brute-force method is to compute 
multiples of P until Q is found.

Thus

P = (16, 5); 2P = (20, 20); 3P = (14, 14); 4P = (19, 20); 5P = (13, 10); 6P = (7, 3); 7P = (8, 7); 8P 
(12, 17); 9P = (4, 5).

Because 9P = (4, 5) = Q, the discrete logarithm Q = (4, 5) to the base P = (16, 5) is k = 9. In a real 
application, k would be so large as to make the brute-force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the flavor of this technique.

Analog of Diffie-Hellman Key Exchange

Key exchange using elliptic curves can be done in the following manner. First pick a large integer q, 
which is either a prime number p or an integer of the form 2m and elliptic curve parameters a and b for 
Equation (10.5) or Equation (10.7). This defines the elliptic group of points E

q
(a, b). Next, pick a base 

point G = (x1, y1) in E
p
(a, b) whose order is a very large value n. The order n of a point G on an elliptic 

curve is the smallest positive integer n such that nG = O. E
q
(a, b) and G are parameters of the 

cryptosystem known to all participants.
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A key exchange between users A and B can be accomplished as follows (Figure 10.12):

1.  

A selects an integer n
A
 less than n. This is A's private key. A then generates a public key P

A
 = n

A
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x G; the public key is a point in Eq(a, b).

2.  

B similarly selects a private key n
B
 and computes a public key P

B
.

3.  

A generates the secret key K = n
A
 x P

B
. B generates the secret key K = n

B
 x P

A
.

Figure 10.12. ECC Diffie-Hellman Key Exchange
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The two calculations in step 3 produce the same result because

n
A
 x P

B
 = n

A
 x (n

B
 x G) = n

B
 x (n

A
 x G) = n

B
 x P

A

To break this scheme, an attacker would need to be able to compute k given G and kG, which is 
assumed hard.

[Page 312]

As an example,
[5]

 take p = 211; Ep(0, 4), which is equivalent to the curve y2 = x3 4; and G = (2, 2). 
One can calculate that 240G = O. A's private key is n

A
 = 121, so A's public key is P

A
 = 121(2, 2) = 

(115, 48). B's private key is n
B
 = 203, so B's public key is 203(2, 2) = (130, 203). The shared secret 

key is 121(130, 203) = 203(115, 48) = (161, 69).

[5] Provided by Ed Schaefer of Santa Clara University.

Note that the secret key is a pair of numbers. If this key is to be used as a session key for conventional 
encryption, then a single number must be generated. We could simply use the x coordinates or some 
simple function of the x coordinate.

Elliptic Curve Encryption/Decryption

Several approaches to encryption/decryption using elliptic curves have been analyzed in the literature. 
In this subsection we look at perhaps the simplest. The first task in this system is to encode the 
plaintext message m to be sent as an x-y point P

m
. It is the point P

m
 that will be encrypted as a 

ciphertext and subsequently decrypted. Note that we cannot simply encode the message as the x or y 
coordinate of a point, because not all such coordinates are in Eq(a, b); for example, see Table 10.1. 
Again, there are several approaches to this encoding, which we will not address here, but suffice it to 
say that there are relatively straightforward techniques that can be used.

As with the key exchange system, an encryption/decryption system requires a point G and an elliptic 
group Eq(a, b) as parameters. Each user A selects a private key n

A
 and generates a public key P

A
 = n

A
 x 

G.

To encrypt and send a message P
m

 to B, A chooses a random positive integer k and produces the 

ciphertext C
m

 consisting of the pair of points:

C
m

 = {kG, P
m

 + kP
B
}

Note that A has used B's public key P
B
. To decrypt the ciphertext, B multiplies the first point in the pair 
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by B's secret key and subtracts the result from the second point:

P
m

 + kP
B
 n

B
(kG) = P

m
 + k(n

B
G) n

B
(kG) = P

m

A has masked the message P
m

 by adding kP
B
 to it. Nobody but A knows the value of k, so even though 

P
B
 is a public key, nobody can remove the mask kP

B
. However, A also includes a "clue," which is enough 

to remove the mask if one knows the private key n
B
. For an attacker to recover the message, the 

attacker would have to compute k given G and kG, which is assumed hard.

As an example of the encryption process (taken from [KOBL94]), take p = 751; E
p
(1, 188), which is 

equivalent to the curve y2 = x3 x + 188; and G = (0, 376). Suppose that A wishes to send a message to 
B that is encoded in the elliptic point P

m
 = (562, 201) and that A selects the random number k = 386. 

B's public key is P
B
 = (201, 5). We have 386(0, 376) = (676, 558), and (562, 201) + 386(201, 5) = 

(385, 328). Thus A sends the cipher text {(676, 558), (385, 328)}.

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P. This is referred to as 
the elliptic curve logarithm problem. The fastest known technique for taking the elliptic curve logarithm 
is known as the Pollard rho method. Table 10.3 compares various algorithms by showing comparable 
key sizes in terms of computational effort for cryptanalysis. As can be seen, a considerably smaller key 
size can be used for ECC compared to RSA. Furthermore, for equal key lengths, the computational effort 
required for ECC and RSA is comparable [JURI97]. Thus, there is a computational advantage to using 
ECC with a shorter key length than a comparably secure RSA.

[Page 313]

Table 10.3. Comparable Key Sizes in Terms of Computational Effort for 
Cryptanalysis

Symmetric Scheme (key size in 
bits)

ECC-Based Scheme (size 
of n in bits)

RSA/DSA (modulus size in 
bits)

56 112 512

80 160 1024

112 224 2048

128 256 3072

92 384 7680

256 512 15360
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Source: Certicom
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[Page 313 (continued)]

10.5. Recommended Reading and Web Sites

A quite readable treatment of elliptic curve cryptography is [ROSI99]; the emphasis is on software 
implementation. Another readable, but rigorous, book is [HANK04]. Two other good treatments, both of 
which contain some rather stiff mathematics, are [BLAK99] and [ENGE99]. There are also good but 
more concise descriptions in [KUMA98], [STIN02], and [KOBL94]. Two interesting survey treatments are 
[FERN99] and [JURI97].

BLAK99 Blake, I.; Seroussi, G.; and Smart, N. Elliptic Curves in Cryptography. 
Cambridge: Cambridge University Press, 1999.

ENGE99 Enge, A. Elliptic Curves and Their Applications to Cryptography. Norwell, MA: 
Kluwer Academic Publishers, 1999.

FERN99 Fernandes, A. "Elliptic Curve Cryptography." Dr. Dobb's Journal, December 
1999.

HANK04 Hankerson, D.; Menezes, A.; and Vanstone, S. Guide to Elliptic Curve 
Cryptography. New York: Springer, 2004.

JURI97 Jurisic, A., and Menezes, A. "Elliptic Curves and Cryptography." Dr. Dobb's 
Journal, April 1997.

KOBL94 Koblitz, N. A Course in Number Theory and Cryptography. New York: 
Springer-Verlag, 1994.

KUMA98 Kumanduri, R., and Romero, C. Number Theory with Computer Applications. 
Upper Saddle River, NJ: Prentice Hall, 1998.

ROSI99 Rosing, M. Implementing Elliptic Curve Cryptography. Greeenwich, CT: 
Manning Publications, 1999.

STIN02 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 
2002.
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Recommended Web Site

●     Certicom: Extensive collection of technical material on elliptic curve cryptography and other 
topics in cryptography
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10.6. Key Terms, Review Questions, and Problems

Key Terms

abelian group

binary curve

cubic equation

Diffie-Hellman key exchange

discrete logarithm

elliptic curve

elliptic curve arithmetic

elliptic curve cryptography

finite field

key distribution

key management

man-the-middle attack

prime curve

primitive root

public-key certificate

public-key directory

zero point

Review Questions

10.1 What are two different uses of public-key cryptography related to key distribution?

file:///D|/1/0131873164/ch10lev1sec6.html (1 von 7) [14.10.2007 09:41:07]



Section 10.6.  Key Terms, Review Questions, and Problems

10.2 List four general categories of schemes for the distribution of public keys.

10.3 What are the essential ingredients of a public-key directory?

10.4 What is a public-key certificate?

10.5 What are the requirements for the use of a public-key certificate scheme?

10.6 Briefly explain Diffie-Hellman key exchange.

10.7 What is an elliptic curve?

10.8 What is the zero point of an elliptic curve?

10.9 What is the sum of three points on an elliptic curve that lie on a straight line?

Problems

10.1 Users A and B use the Diffie-Hellman key exchange technique with a common prime q 
= 71 and a primitive root α = 7.

a.  

If user A has private key X
A
 = 5, what is A's public key Y

A
?

b.  

If user B has private key X
B
 = 12, what is B's public key Y

B
?

c.  

What is the shared secret key?
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10.2 Consider a Diffie-Hellman scheme with a common prime q = 11 and a primitive root α 
= 2.

a.  

Show that 2 is a primitive root of 11.

b.  

If user A has public key Y
A
 = 9, what is A's private key X

A
?

c.  

If user B has public key Y
B
 = 3, what is the shared secret key K, shared with A?

10.3 In the Diffie-Hellman protocol, each participant selects a secret number x and sends 

the other participant αx mod q for some public number α. What would happen if the 

participants sent each other xα for some public number α instead? Give at least one 
method Alice and Bob could use to agree on a key. Can Eve break your system 
without finding the secret numbers? Can Eve find the secret numbers?

[Page 315]

10.4 This problem illustrates the point that the Diffie-Hellman protocol is not secure without 
the step where you take the modulus; i.e. the "Indiscrete Log Problem" is not a hard 
problem! You are Eve, and have captured Alice and Bob and imprisoned them. You 
overhear the following dialog.

Bob: Oh, let's not bother with the prime in the Diffie-Hellman protocol, it will make 
things easier.

Alice: Okay, but we still need a base to raise things to. How about g = 3?

Bob: All right, then my result is 27.

Alice: And mine is 243.

What is Bob's secret X
B
 and Alice's secret X

A
? What is their secret combined key? 

(Don't forget to show your work.)

10.5 Section 10.2 describes a man-in-the-middle attack on the Diffie-Hellman key 
exchange protocol in which the adversary generates two public-private key pairs for 
the attack. Could the same attack be accomplished with one pair? Explain.
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10.6 In 1985, T. ElGamal announced a public-key scheme based on discrete logarithms, 
closely related to the Diffie-Hellman technique. As with Diffie-Hellman, the global 
elements of the ElGamal scheme are a prime number q and α, a primitive root of q. A 
user A selects a private key X

A
 and calculates a public key Y

A
 as in Diffie-Hellman. 

User A encrypts a plaintext M < q intended for user B as follows:

1.  

Choose a random integer k such that 1  k  q 1.

2.  

Compute K = (Y
B
)k mod q.

3.  

Encrypt M as the pair of integers (C1, C2) where

C1 = αk mod q C2 = KM mod q

User B recovers the plaintext as follows:

1.  

Compute K = (C1)
X

B mod q.

2.  

Compute M = (C2K1) mod q.

Show that the system works; that is, show that the decryption process does recover 
the plaintext.
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10.7 Consider an ElGamal scheme with a common prime q = 71 and a primitive root α = 7

a.  

If B has public key Y
B
 = 3 and A chose the random integer k = 2, what is the 

ciphertext of M = 30?

b.  

If A now chooses a different value of k, so that the encoding of M = 30 is C = 
(59, C2), what is the integer C2?

10.8 Rule (5) for doing arithmetic in elliptic curves over real numbers states that to double 
a point Q, draw the tangent line and find the other point of intersection S. Then Q + Q 
= 2Q = S. If the tangent line is not vertical, there will be exactly one point of 
intersection. However, suppose the tangent line is vertical? In that case, what is the 
value 2Q? What is the value 3Q?

10.9 Demonstrate that the two elliptic curves of Figure 10.9 each satisfy the conditions for 
a group over the real numbers.

10.10 Is (4,7) a point on the elliptic curve y2 = x3 5x + 5 over real numbers?

10.11 On the elliptic curve over the real numbers y2 = x3 36x, let P = (3.5, 9.5) and Q = 
(2.5, 8.5). Find P + Q and 2P.

10.12 Does the elliptic curve equation y2 = x3 + 10x + 5 define a group over Z17?

10.13 Consider the elliptic curve E11(1, 6); that is, the curve is defined by y2 = x3 + x + 6 

with a modulus of p = 11. Determine all of the points in E11(1, 6). Hint: Start by 

calculating the right-hand side of the equation for all values of x.

10.14 What are the negatives of the following elliptic curve points over Z17? P = (5, 8); Q = 

(3, 0); R = (0, 6).

10.15 For E11(1, 6), consider the point G = (2, 7). Compute the multiples of G from 2G 

through 13G.
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10.16 This problem performs elliptic curve encryption/decryption using the scheme outlined 
in Section 10.4. The cryptosystem parameters are E11(1, 6) and G = (2, 7). B's secret 

key is n
B
 = 7.

a.  

Find B's public key P
B
.

b.  

A wishes to encrypt the message Pm = (10, 9) and chooses the random value k 

= 3. Determine the ciphertext C
m

.

c.  

Show the calculation by which B recovers P
m

 from C
m

.

10.17 The following is a first attempt at an Elliptic Curve signature scheme. We have a global 
elliptic curve, prime p, and "generator" G. Alice picks a private signing key X

A
 and 

forms the public verifying key Y
A
 = X

A
G. To sign a message M:

●     Alice picks a value k.
●     Alice sends Bob M, k and the signature S = M kX

A
G.

●     Bob verifies that M = S + kY
A

a.  

Show that this scheme works. That is, show that the verification process 
produces an equality if the signature is valid.

b.  

Show that the scheme is unacceptable by describing a simple technique for 
forging a user's signature on an arbitrary message.
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10.18 Here is an improved version of the scheme given in the previous problem. As before, 
we have a global elliptic curve, prime p, and "generator" G. Alice picks a private 
signing key X

A
 and forms the public verifying key Y

A
 = X

A
G. To sign a message M,

●     Bob picks a value k.
●     Bob sends Alice C1 = kG.

●     Alice sends Bob M and the signature S = M X
A
C1-

●     Bob verifies that M = S + kY
A

a.  

Show that this scheme works. That is, show that the verification process 
produces an equality if the signature is valid.

b.  

Show that forging a message in this scheme is as hard as breaking (ElGamal) 
Elliptic Curve Cryptography. (Or find an easier way to forge a message?)

c.  

This scheme has an extra "pass" compared to other cryptosystems and 
signature schemes we have looked at. What are some drawbacks to this?
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Chapter 11. Message Authentication and Hash Functions
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Requirements for MACs
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Simple Hash Functions
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Related Problem

The Birthday Paradox

Useful Inequality

The General Case of Duplications
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At cats' green on the Sunday he took the message from the inside of the pillar and added 
Peter Moran's name to the two names already printed there in the "Brontosaur" code. The 
message now read: "Leviathan to Dragon: Martin Hillman, Trevor Allan, Peter Moran: 
observe and tail." What was the good of it John hardly knew. He felt better, he felt that at 
last he had made an attack on Peter Moran instead of waiting passively and effecting no 
retaliation. Besides, what was the use of being in possession of the key to the codes if he 
never took advantage of it?

Talking to Strange Men, Ruth Rendell

Key Points

●     Message authentication is a mechanism or service used to verify the integrity of a 
message. Message authentication assures that data received are exactly as sent by 
(i.e., contain no modification, insertion, deletion, or replay) and that the purported 
identity of the sender is valid.

●     Symmetric encryption provides authentication among those who share the secret 
key. Encryption of a message by a sender's private key also provides a form of 
authentication.

●     The two most common cryptographic techniques for message authentication are a 
message authentication code (MAC) and a secure hash function.

●     A MAC is an algorithm that requires the use of a secret key. A MAC takes a variable-
length message and a secret key as input and produces an authentication code. A 
recipient in possession of the secret key can generate an authentication code to 
verify the integrity of the message.
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●     A hash function maps a variable-length message into a fixed length hash value, or 
message digest. For message authentication, a secure hash function must be 
combined in some fashion with a secret key.

 
Perhaps the most confusing area of network security is that of message authentication and the related 
topic of digital signatures. The attacks and countermeasures become so convoluted that practitioners in 
this area begin to remind one of the astronomers of old, who built epicycles on top of epicycles in an 
attempt to account for all contingencies. Fortunately, it appears that today's designers of cryptographic 
protocols, unlike those long-forgotten astronomers, are working from a fundamentally sound model.

It would be impossible, in anything less than book length, to exhaust all the cryptographic functions and 
protocols that have been proposed or implemented for message authentication and digital signatures. 
Instead, the purpose of this chapter and the next two is to provide a broad overview of the subject and 
to develop a systematic means of describing the various approaches.

[Page 319]

This chapter begins with an introduction to the requirements for authentication and digital signature and 
the types of attacks to be countered. Then the basic approaches are surveyed, including the increasingly 
important area of secure hash functions. Specific hash functions are examined in Chapter 12.
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11.1. Authentication Requirements

In the context of communications across a network, the following attacks can be identified:

1.  

Disclosure: Release of message contents to any person or process not possessing the 
appropriate cryptographic key.

2.  

Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-oriented 
application, the frequency and duration of connections could be determined. In either a 
connection-oriented or connectionless environment, the number and length of messages between 
parties could be determined.

3.  

Masquerade: Insertion of messages into the network from a fraudulent source. This includes 
the creation of messages by an opponent that are purported to come from an authorized entity. 
Also included are fraudulent acknowledgments of message receipt or nonreceipt by someone 
other than the message recipient.

4.  

Content modification: Changes to the contents of a message, including insertion, deletion, 
transposition, and modification.

5.  

Sequence modification: Any modification to a sequence of messages between parties, 
including insertion, deletion, and reordering.

6.  

Timing modification: Delay or replay of messages. In a connection-oriented application, an 
entire session or sequence of messages could be a replay of some previous valid session, or 
individual messages in the sequence could be delayed or replayed. In a connectionless 
application, an individual message (e.g., datagram) could be delayed or replayed.

7.  

Source repudiation: Denial of transmission of message by source.

8.  

Destination repudiation: Denial of receipt of message by destination.

file:///D|/1/0131873164/ch11lev1sec1.html (1 von 2) [14.10.2007 09:41:08]



Section 11.1.  Authentication Requirements

Measures to deal with the first two attacks are in the realm of message confidentiality and are dealt with 
in Part One. Measures to deal with items 3 through 6 in the foregoing list are generally regarded as 
message authentication. Mechanisms for dealing specifically with item 7 come under the heading of 
digital signatures. Generally, a digital signature technique will also counter some or all of the attacks 
listed under items 3 through 6. Dealing with item 8 may require a combination of the use of digital 
signatures and a protocol designed to counter this attack.

In summary, message authentication is a procedure to verify that received messages come from the 
alleged source and have not been altered. Message authentication may also verify sequencing and 
timeliness. A digital signature is an authentication technique that also includes measures to counter 
repudiation by the source.
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11.2. Authentication Functions

Any message authentication or digital signature mechanism has two levels of functionality. At the lower 
level, there must be some sort of function that produces an authenticator: a value to be used to 
authenticate a message. This lower-level function is then used as a primitive in a higher-level 
authentication protocol that enables a receiver to verify the authenticity of a message.

This section is concerned with the types of functions that may be used to produce an authenticator. 
These may be grouped into three classes, as follows:

●     Message encryption: The ciphertext of the entire message serves as its authenticator
●     Message authentication code (MAC): A function of the message and a secret key that 

produces a fixed-length value that serves as the authenticator
●     Hash function: A function that maps a message of any length into a fixed-length hash value, 

which serves as the authenticator

We now briefly examine each of these topics; MACs and hash functions are then examined in greater 
detail in Sections 11.3 and 11.4.

Message Encryption

Message encryption by itself can provide a measure of authentication. The analysis differs for symmetric 
and public-key encryption schemes.

Symmetric Encryption

Consider the straightforward use of symmetric encryption (Figure 11.1a). A message M transmitted from 
source A to destination B is encrypted using a secret key K shared by A and B. If no other party knows 
the key, then confidentiality is provided: No other party can recover the plaintext of the message.

Figure 11.1. Basic Uses of Message Encryption

(This item is displayed on page 321 in the print version) 

[View full size image]
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In addition, we may say that B is assured that the message was generated by A. Why? The message 
must have come from A because A is the only other party that possesses K and therefore the only other 
party with the information necessary to construct ciphertext that can be decrypted with K. Furthermore, 
if M is recovered, B knows that none of the bits of M have been altered, because an opponent that does 
not know K would not know how to alter bits in the ciphertext to produce desired changes in the 
plaintext.

So we may say that symmetric encryption provides authentication as well as confidentiality. However, 
this flat statement needs to be qualified. Consider exactly what is happening at B. Given a decryption 
function D and a secret key K, the destination will accept any input X and produce output Y = D(K, X). If 
X is the ciphertext of a legitimate message M produced by the corresponding encryption function, then Y 
is some plaintext message M. Otherwise, Y will likely be a meaningless sequence of bits. There may 
need to be some automated means of determining at B whether Y is legitimate plaintext and therefore 
must have come from A.

The implications of the line of reasoning in the preceding paragraph are profound from the point of view 
of authentication. Suppose the message M can be any arbitrary bit pattern. In that case, there is no way 
to determine automatically, at the destination, whether an incoming message is the ciphertext of a 
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legitimate message. This conclusion is incontrovertible: If M can be any bit pattern, then regardless of 
the value of X, the value Y = D(K, X) is some bit pattern and therefore must be accepted as authentic 
plaintext.

[Page 321]

Thus, in general, we require that only a small subset of all possible bit patterns be considered legitimate 
plaintext. In that case, any spurious ciphertext is unlikely to produce legitimate plaintext. For example, 
suppose that only one bit pattern in 106 is legitimate plaintext. Then the probability that any randomly 
chosen bit pattern, treated as ciphertext, will produce a legitimate plaintext message is only 10-6.

For a number of applications and encryption schemes, the desired conditions prevail as a matter of 
course. For example, suppose that we are transmitting English-language messages using a Caesar 
cipher with a shift of one (K = 1). A sends the following legitimate ciphertext:

nbsftfbupbutboeepftfbupbutboemjuumfmbnctfbujwz

 
B decrypts to produce the following plaintext:

mareseatoatsanddoeseatoatsandlittlelambseativy

 

[Page 322]

A simple frequency analysis confirms that this message has the profile of ordinary English. On the other 
hand, if an opponent generates the following random sequence of letters:

zuvrsoevgqxlzwigamdvnmhpmccxiuureosfbcebtqxsxq

 
this decrypts to:

ytuqrndufpwkyvhfzlcumlgolbbwhttqdnreabdaspwrwp

 
which does not fit the profile of ordinary English.

It may be difficult to determine automatically if incoming ciphertext decrypts to intelligible plaintext. If 
the plaintext is, say, a binary object file or digitized X-rays, determination of properly formed and 
therefore authentic plaintext may be difficult. Thus, an opponent could achieve a certain level of 
disruption simply by issuing messages with random content purporting to come from a legitimate user.

One solution to this problem is to force the plaintext to have some structure that is easily recognized but 
that cannot be replicated without recourse to the encryption function. We could, for example, append an 
error-detecting code, also known as a frame check sequence (FCS) or checksum, to each message 
before encryption, as illustrated in Figure 11.2a. A prepares a plaintext message M and then provides 
this as input to a function F that produces an FCS. The FCS is appended to M and the entire block is then 
encrypted. At the destination, B decrypts the incoming block and treats the results as a message with an 
appended FCS. B applies the same function F to attempt to reproduce the FCS. If the calculated FCS is 
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equal to the incoming FCS, then the message is considered authentic. It is unlikely that any random 
sequence of bits would exhibit the desired relationship.

Figure 11.2. Internal and External Error Control

[View full size image]
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Note that the order in which the FCS and encryption functions are performed is critical. The sequence 
illustrated in Figure 11.2a is referred to in [DIFF79] as internal error control, which the authors contrast 
with external error control (Figure 11.2b). With internal error control, authentication is provided because 
an opponent would have difficulty generating ciphertext that, when decrypted, would have valid error 
control bits. If instead the FCS is the outer code, an opponent can construct messages with valid error-
control codes. Although the opponent cannot know what the decrypted plaintext will be, he or she can 
still hope to create confusion and disrupt operations.

An error-control code is just one example; in fact, any sort of structuring added to the transmitted 
message serves to strengthen the authentication capability. Such structure is provided by the use of a 
communications architecture consisting of layered protocols. As an example, consider the structure of 
messages transmitted using the TCP/IP protocol architecture. Figure 11.3 shows the format of a TCP 
segment, illustrating the TCP header. Now suppose that each pair of hosts shared a unique secret key, 
so that all exchanges between a pair of hosts used the same key, regardless of application. Then we 
could simply encrypt all of the datagram except the IP header (see Figure 7.5). Again, if an opponent 
substituted some arbitrary bit pattern for the encrypted TCP segment, the resulting plaintext would not 
include a meaningful header. In this case, the header includes not only a checksum (which covers the 
header) but also other useful information, such as the sequence number. Because successive TCP 
segments on a given connection are numbered sequentially, encryption assures that an opponent does 
not delay, misorder, or delete any segments.

Figure 11.3. TCP Segment

file:///D|/1/0131873164/ch11lev1sec2.html (4 von 15) [14.10.2007 09:41:10]

file:///D|/1/0131873164/images/11fig02_alt.jpg


Section 11.2.  Authentication Functions

 
Public-Key Encryption

The straightforward use of public-key encryption (Figure 11.1b) provides confidentiality but not 
authentication. The source (A) uses the public key PU

b
 of the destination (B) to encrypt M. Because only 

B has the corresponding private key PR
b
, only B can decrypt the message. This scheme provides no 

authentication because any opponent could also use B's public key to encrypt a message, claiming to be 
A.

[Page 324]

To provide authentication, A uses its private key to encrypt the message, and B uses A's public key to 
decrypt (Figure 11.1c). This provides authentication using the same type of reasoning as in the 
symmetric encryption case: The message must have come from A because A is the only party that 
possesses PR

a
 and therefore the only party with the information necessary to construct ciphertext that 

can be decrypted with PU
a
. Again, the same reasoning as before applies: There must be some internal 

structure to the plaintext so that the receiver can distinguish between well-formed plaintext and random 
bits.

Assuming there is such structure, then the scheme of Figure 11.1c does provide authentication. It also 

provides what is known as digital signature.
[1]

 Only A could have constructed the ciphertext because 
only A possesses PR

a
. Not even B, the recipient, could have constructed the ciphertext. Therefore, if B is 

in possession of the ciphertext, B has the means to prove that the message must have come from A. In 
effect, A has "signed" the message by using its private key to encrypt. Note that this scheme does not 
provide confidentiality. Anyone in possession of A's public key can decrypt the ciphertext.

[1] This is not the way in which digital signatures are constructed, as we shall see, but the principle is the same.
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To provide both confidentiality and authentication, A can encrypt M first using its private key, which 
provides the digital signature, and then using B's public key, which provides confidentiality (Figure 
11.1d). The disadvantage of this approach is that the public-key algorithm, which is complex, must be 
exercised four times rather than two in each communication.

Table 11.1 summarizes the confidentiality and authentication implications of these various approaches to 
message encryption.

Table 11.1. Confidentiality and Authentication Implications 
of Message Encryption (see Figure 11.1)

(This item is displayed on page 325 in the print version) 

A  B:E(K, M)

•Provides confidentiality

Only A and B share K

•Provides a degree of authentication

Could come only from A

Has not been altered in transit

Requires some formatting/redundancy

•Does not provide signature

Receiver could forge message

Sender could deny message

(a) Symmetric encryption

A  B:E(PU
b
, M)

• Provides confidentiality

Only B has PR
b
 to decrypt

• Provides no authentication
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Any party could use PU
b
 to encrypt message and claim to be A

(b) Public-key (asymmetric) encryption: confidentiality

A  B:E(PRa, M)

• Provides authentication and signature

Only A has PR
b
 to encrypt

Has not been altered in transit

Requires some formatting/redundancy

Any party can use PU
a
 to verify signature

(c) Public-key encryption: authentication and signature

A  B:E(PU
b
, E(PR

a
, M))

• Provides confidentiality because of PU
b

• Provides authentication and signature because of PR
a

(d) Public-key encryption: confidentiality, authentication, and signature

 
Message Authentication Code

An alternative authentication technique involves the use of a secret key to generate a small fixed-size 
block of data, known as a cryptographic checksum or MAC that is appended to the message. This 
technique assumes that two communicating parties, say A and B, share a common secret key K. When A 
has a message to send to B, it calculates the MAC as a function of the message and the key:MAC = C(K, 
M), where

M = input message

C = MAC function

K = shared secret key

MAC = message authentication code

 
The message plus MAC are transmitted to the intended recipient. The recipient performs the same 
calculation on the received message, using the same secret key, to generate a new MAC. The received 
MAC is compared to the calculated MAC (Figure 11.4a). If we assume that only the receiver and the 
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sender know the identity of the secret key, and if the received MAC matches the calculated MAC, then

1.  

The receiver is assured that the message has not been altered. If an attacker alters the message 
but does not alter the MAC, then the receiver's calculation of the MAC will differ from the 
received MAC. Because the attacker is assumed not to know the secret key, the attacker cannot 
alter the MAC to correspond to the alterations in the message.

[Page 325]
2.  

The receiver is assured that the message is from the alleged sender. Because no one else knows 
the secret key, no one else could prepare a message with a proper MAC.

3.  

If the message includes a sequence number (such as is used with HDLC, X.25, and TCP), then 
the receiver can be assured of the proper sequence because an attacker cannot successfully alter 
the sequence number.

[Page 326]

Figure 11.4. Basic Uses of Message Authentication Code (MAC)

[View full size image]
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A MAC function is similar to encryption. One difference is that the MAC algorithm need not be reversible, 
as it must for decryption. In general, the MAC function is a many-to-one function. The domain of the 
function consists of messages of some arbitrary length, whereas the range consists of all possible MACs 

and all possible keys. If an n-bit MAC is used, then there are 2n possible MACs, whereas there are N 

possible messages with N >> 2n. Furthermore, with a k-bit key, there are 2k possible keys.

For example, suppose that we are using 100-bit messages and a 10-bit MAC. Then, there are a total of 
2100 different messages but only 210 different MACs. So, on average, each MAC value is generated by a 
total of 2100/210 = 290 different messages. If a 5-bit key is used, then there are 25 = 32 different 
mappings from the set of messages to the set of MAC values.

It turns out that because of the mathematical properties of the authentication function, it is less 
vulnerable to being broken than encryption.

The process depicted in Figure 11.4a provides authentication but not confidentiality, because the 
message as a whole is transmitted in the clear. Confidentiality can be provided by performing message 
encryption either after (Figure 11.4b) or before (Figure 11.4c) the MAC algorithm. In both these cases, 
two separate keys are needed, each of which is shared by the sender and the receiver. In the first case, 
the MAC is calculated with the message as input and is then concatenated to the message. The entire 
block is then encrypted. In the second case, the message is encrypted first. Then the MAC is calculated 
using the resulting ciphertext and is concatenated to the ciphertext to form the transmitted block. 
Typically, it is preferable to tie the authentication directly to the plaintext, so the method of Figure 11.4b 
is used.

[Page 327]

Because symmetric encryption will provide authentication and because it is widely used with readily 
available products, why not simply use this instead of a separate message authentication code? 
[DAVI89] suggests three situations in which a message authentication code is used:

1.  

There are a number of applications in which the same message is broadcast to a number of 
destinations. Examples are notification to users that the network is now unavailable or an alarm 
signal in a military control center. It is cheaper and more reliable to have only one destination 
responsible for monitoring authenticity. Thus, the message must be broadcast in plaintext with 
an associated message authentication code. The responsible system has the secret key and 
performs authentication. If a violation occurs, the other destination systems are alerted by a 
general alarm.

2.  

Another possible scenario is an exchange in which one side has a heavy load and cannot afford 
the time to decrypt all incoming messages. Authentication is carried out on a selective basis, 
messages being chosen at random for checking.

3.  

Authentication of a computer program in plaintext is an attractive service. The computer 
program can be executed without having to decrypt it every time, which would be wasteful of 
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processor resources. However, if a message authentication code were attached to the program, it 
could be checked whenever assurance was required of the integrity of the program.

Three other rationales may be added, as follows:

4.  

For some applications, it may not be of concern to keep messages secret, but it is important to 
authenticate messages. An example is the Simple Network Management Protocol Version 3 
(SNMPv3), which separates the functions of confidentiality and authentication. For this 
application, it is usually important for a managed system to authenticate incoming SNMP 
messages, particularly if the message contains a command to change parameters at the 
managed system. On the other hand, it may not be necessary to conceal the SNMP traffic.

5.  

Separation of authentication and confidentiality functions affords architectural flexibility. For 
example, it may be desired to perform authentication at the application level but to provide 
confidentiality at a lower level, such as the transport layer.

6.  

A user may wish to prolong the period of protection beyond the time of reception and yet allow 
processing of message contents. With message encryption, the protection is lost when the 
message is decrypted, so the message is protected against fraudulent modifications only in 
transit but not within the target system.

Finally, note that the MAC does not provide a digital signature because both sender and receiver share 
the same key.

Table 11.2 summarizes the confidentiality and authentication implications of the approaches illustrated 
in Figure 11.4.

[Page 328]

Table 11.2. Basic Uses of Message Authentication Code C 
(see Figure 11.4)

A  B: M||C(K, M)

•Provides authentication

Only A and B share K

(a) Message authentication

A  B:E(K
2
, [M||C(K, M)])
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• Provides authentication

Only A and B share K
1

• Provides confidentiality

Only A and B share K
2

(b) Message authentication and confidentiality: authentication tied to plaintext

A  B:E(K
2
, M)||C(K

1
, E(K

2
, M))

• Provides authentication

Using K
1

• Provides confidentiality

Using K
2

(c) Message authentication and confidentiality: authentication tied to ciphertext

 
Hash Function

A variation on the message authentication code is the one-way hash function. As with the message 
authentication code, a hash function accepts a variable-size message M as input and produces a fixed-
size output, referred to as a hash code H(M). Unlike a MAC, a hash code does not use a key but is a 
function only of the input message. The hash code is also referred to as a message digest or hash 
value. The hash code is a function of all the bits of the message and provides an error-detection 
capability: A change to any bit or bits in the message results in a change to the hash code.

Figure 11.5 illustrates a variety of ways in which a hash code can be used to provide message 
authentication, as follows:

a.  

The message plus concatenated hash code is encrypted using symmetric encryption. This is 
identical in structure to the internal error control strategy shown in Figure 11.2a. The same line 
of reasoning applies: Because only A and B share the secret key, the message must have come 
from A and has not been altered. The hash code provides the structure or redundancy required 
to achieve authentication. Because encryption is applied to the entire message plus hash code, 
confidentiality is also provided.

b.  
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Only the hash code is encrypted, using symmetric encryption. This reduces the processing 
burden for those applications that do not require confidentiality.

[Page 330]

Note that the combination of hashing and encryption results in an overall function that is, in fact, 
a MAC (Figure 11.4a). That is, E(K, H(M)) is a function of a variable-length message M and a 
secret key K, and it produces a fixed-size output that is secure against an opponent who does 
not know the secret key.

c.  

Only the hash code is encrypted, using public-key encryption and using the sender's private key. 
As with (b), this provides authentication. It also provides a digital signature, because only the 
sender could have produced the encrypted hash code. In fact, this is the essence of the digital 
signature technique.

d.  

If confidentiality as well as a digital signature is desired, then the message plus the private-key-
encrypted hash code can be encrypted using a symmetric secret key. This is a common 
technique.

e.  

It is possible to use a hash function but no encryption for message authentication. The technique 
assumes that the two communicating parties share a common secret value S. A computes the 
hash value over the concatenation of M and S and appends the resulting hash value to M. 
Because B possesses S, it can recompute the hash value to verify. Because the secret value itself 
is not sent, an opponent cannot modify an intercepted message and cannot generate a false 
message.

f.  

Confidentiality can be added to the approach of (e) by encrypting the entire message plus the 
hash code.

Figure 11.5. Basic Uses of Hash Function

(This item is displayed on page 329 in the print version) 

[View full size image]
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When confidentiality is not required, methods (b) and (c) have an advantage over those that encrypt the 
entire message in that less computation is required. Nevertheless, there has been growing interest in 
techniques that avoid encryption (Figure 11.5e). Several reasons for this interest are pointed out in 
[TSUD92]:

●     Encryption software is relatively slow. Even though the amount of data to be encrypted per 
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message is small, there may be a steady stream of messages into and out of a system.
●     Encryption hardware costs are not negligible. Low-cost chip implementations of DES are 

available, but the cost adds up if all nodes in a network must have this capability.
●     Encryption hardware is optimized toward large data sizes. For small blocks of data, a high 

proportion of the time is spent in initialization/invocation overhead.
●     Encryption algorithms may be covered by patents. For example, until the patent expired, RSA 

was patented and had to be licensed, adding a cost.

Table 11.3 summarizes the confidentiality and authentication implications of the approaches illustrated 
in Figure 11.5. We next examine MACs and hash codes in more detail.

[Page 331]

Table 11.3. Basic Uses of Hash Function H (see Figure 11.5)

A  B:E(K, [M||H(M)]) A  B: E(K, [M||E(PR
a
, H(M))])

• Provides confidentiality • Provides authentication and digital signature

Only A and B share K • Provides confidentiality

• Provides authentication Only A and B share K

H(M) is cryptographically protected  

(a) Encrypt message plus hash code (d) Encrypt result of (c)shared secret key

A  B: M||E(K, H(M)) A  B: M||H(M||S)

• Provides authentication • Provides authentication

H(M) is cryptographically protected Only A and B share S

(b) Encrypt hash codeshared secret key (e) Compute hash code of message plus secret 
value

A  B: M||E(PR
a
, H(M)) A  B: E(K, [M||H(M||S])

• Provides authentication and digital signature • Provides authentication

H(M) is cryptographically protected Only A and B share S

Only A could create E(PR
a
, H(M)) • Provides confidentiality
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 Only A and B share K

(c) Encrypt hash codesender's private key (f) Encrypt result of (e)

 
 

  

file:///D|/1/0131873164/ch11lev1sec2.html (15 von 15) [14.10.2007 09:41:10]



Section 11.3.  Message Authentication Codes

  
 
 

[Page 331 (continued)]

11.3. Message Authentication Codes

A MAC, also known as a cryptographic checksum, is generated by a function C of the form

MAC = C(K, M)

where M is a variable-length message, K is a secret key shared only by sender and receiver, and C(K, 
M) is the fixed-length authenticator. The MAC is appended to the message at the source at a time when 
the message is assumed or known to be correct. The receiver authenticates that message by 
recomputing the MAC.

In this section, we review the requirements for the function C and then examine a specific example. 
Other examples are discussed in Chapter 12.

Requirements for MACs

When an entire message is encrypted for confidentiality, using either symmetric or asymmetric 
encryption, the security of the scheme generally depends on the bit length of the key. Barring some 
weakness in the algorithm, the opponent must resort to a brute-force attack using all possible keys. On 

average, such an attack will require 2(k-1) attempts for a k-bit key. In particular, for a ciphertext-only 
attack, the opponent, given ciphertext C, would perform P

i
 = D(K

i
, C) for all possible key values K

i
 until 

a P
i
 was produced that matched the form of acceptable plaintext.

[Page 332]

In the case of a MAC, the considerations are entirely different. In general, the MAC function is a many-
to-one function, due to the many-to-one nature of the function. Using brute-force methods, how would 
an opponent attempt to discover a key? If confidentiality is not employed, the opponent has access to 
plaintext messages and their associated MACs. Suppose k > n; that is, suppose that the key size is 
greater than the MAC size. Then, given a known M1 and MAC1, with MAC1 = C(K, M1), the cryptanalyst 

can perform MAC
i
 = C(K

i
, M1) for all possible key values K

i
. At least one key is guaranteed to produce a 

match of MAC
i
 = MAC1. Note that a total of 2k MACs will be produced, but there are only 2n < 2k 

different MAC values. Thus, a number of keys will produce the correct MAC and the opponent has no 
way of knowing which is the correct key. On average, a total of 2k/2n = 2(k-n) keys will produce a 
match. Thus, the opponent must iterate the attack:

●     Round 1

Given: M1, MAC1 = C(K, M1)

Compute MAC
i
 = C(K

i
, M1) for all 2k keys
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Number of matches  2(k-n)

●     Round 2

Given: M2, MAC2 = C(K, M2)

Compute MAC
i
 = C(K

i
, M2) for the 2(k-n) keys resulting from Round 1

Number of matches  2(k-2xn)

and so on. On average, α rounds will be needed if k = α x n. For example, if an 80-bit key is used and 
the MAC is 32 bits long, then the first round will produce about 248 possible keys. The second round will 
narrow the possible keys to about 216 possibilities. The third round should produce only a single key, 
which must be the one used by the sender.

If the key length is less than or equal to the MAC length, then it is likely that a first round will produce a 
single match. It is possible that more than one key will produce such a match, in which case the 
opponent would need to perform the same test on a new (message, MAC) pair.

Thus, a brute-force attempt to discover the authentication key is no less effort and may be more effort 
than that required to discover a decryption key of the same length. However, other attacks that do not 
require the discovery of the key are possible.

Consider the following MAC algorithm. Let M = (X1||X2||...||Xm
) be a message that is treated as a 

concatenation of 64-bit blocks X
i
. Then define

∆(M)
=X1  X2  ...  X

m

C(K, M = E(K, ∆(M))

 
where  is the exclusive-OR (XOR) operation and the encryption algorithm is DES in electronic 
codebook mode. Thus, the key length is 56 bits and the MAC length is 64 bits. If an opponent observes 
{M||C(K, M)}, a brute-force attempt to determine K will require at least 256 encryptions. But the 
opponent can attack the system by replacing X1 through X

m-1 with any desired values Y1 through Y
m-1 

and replacing X
m

 with Y
m

 where Y
m

 is calculated as follows:

[Page 333]

Y
m

 = Y1  Y2  ...  Y
m1  ∆(M)
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The opponent can now concatenate the new message, which consists of Y1 through Ym, with the original 

MAC to form a message that will be accepted as authentic by the receiver. With this tactic, any message 
of length 64 x (m 1) bits can be fraudulently inserted.

Thus, in assessing the security of a MAC function, we need to consider the types of attacks that may be 
mounted against it. With that in mind, let us state the requirements for the function. Assume that an 
opponent knows the MAC function C but does not know K. Then the MAC function should satisfy the 
following requirements:

1.  

If an opponent observes M and C(K, M), it should be computationally infeasible for the opponent 
to construct a message M' such that C(K, M') = C(K, M).

2.  

C(K, M) should be uniformly distributed in the sense that for randomly chosen messages, M and 

M', the probability that C(K, M) = C(K, M') is 2n, where n is the number of bits in the MAC.

3.  

Let M' be equal to some known transformation on M. That is, M' = f(M). For example, f may 
involve inverting one or more specific bits. In that case, Pr[C(K, M) = C(K, M')] = 2n.

The first requirement speaks to the earlier example, in which an opponent is able to construct a new 
message to match a given MAC, even though the opponent does not know and does not learn the key. 
The second requirement deals with the need to thwart a brute-force attack based on chosen plaintext. 
That is, if we assume that the opponent does not know K but does have access to the MAC function and 
can present messages for MAC generation, then the opponent could try various messages until finding 
one that matches a given MAC. If the MAC function exhibits uniform distribution, then a brute-force 

method would require, on average, 2(n1) attempts before finding a message that fits a given MAC.

The final requirement dictates that the authentication algorithm should not be weaker with respect to 
certain parts or bits of the message than others. If this were not the case, then an opponent who had M 
and C(K, M) could attempt variations on M at the known "weak spots" with a likelihood of early success 
at producing a new message that matched the old MAC.

Message Authentication Code Based on DES

The Data Authentication Algorithm, based on DES, has been one of the most widely used MACs for a 
number of years. The algorithm is both a FIPS publication (FIPS PUB 113) and an ANSI standard 
(X9.17). However, as we discuss in Chapter 12, security weaknesses in this algorithm have been 
discovered and it is being replaced by newer and stronger algorithms.

The algorithm can be defined as using the cipher block chaining (CBC) mode of operation of DES (Figure 
6.4) with an initialization vector of zero. The data (e.g., message, record, file, or program) to be 
authenticated are grouped into contiguous 64-bit blocks: D1, D2,..., DN

. If necessary, the final block is 

padded on the right with zeroes to form a full 64-bit block. Using the DES encryption algorithm, E, and a 
secret key, K, a data authentication code (DAC) is calculated as follows (Figure 11.6):
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[Page 334]

O1 = E(K, D1)

O2 = E(K, [D2  O1])

O3 = (K, [D3  O2])

•  

•  

•  

O
N = E(K, [D

N
  O

N1])

 
Figure 11.6. Data Authentication Algorithm (FIPS PUB 113)

[View full size image]

 
The DAC consists of either the entire block O

N
 or the leftmost M bits of the block, with 16  M  64.

 
  

file:///D|/1/0131873164/ch11lev1sec3.html (4 von 4) [14.10.2007 09:41:11]

file:///D|/1/0131873164/images/11fig06_alt.jpg
file:///D|/1/0131873164/6991536.html


Section 11.4.  Hash Functions

  
 
 

[Page 334 (continued)]

11.4. Hash Functions

A hash value h is generated by a function H of the form

h = H(M)

where M is a variable-length message and H(M) is the fixed-length hash value. The hash value is 
appended to the message at the source at a time when the message is assumed or known to be correct. 
The receiver authenticates that message by recomputing the hash value. Because the hash function 
itself is not considered to be secret, some means is required to protect the hash value (Figure 11.5).

We begin by examining the requirements for a hash function to be used for message authentication. 
Because hash functions are typically quite complex, it is useful to examine some very simple hash 
functions to get a feel for the issues involved. We then look at several approaches to hash function 
design.

[Page 335]

Requirements for a Hash Function

The purpose of a hash function is to produce a "fingerprint" of a file, message, or other block of data. To 
be useful for message authentication, a hash function H must have the following properties (adapted 
from a list in [NECH92]):

1.  

H can be applied to a block of data of any size.

2.  

H produces a fixed-length output.

3.  

H(x) is relatively easy to compute for any given x, making both hardware and software 
implementations practical.

4.  

For any given value h, it is computationally infeasible to find x such that H(x) = h. This is 
sometimes referred to in the literature as the one-way property.

5.  
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For any given block x, it is computationally infeasible to find y  x such that H(y) = H(x). This 
is sometimes referred to as weak collision resistance.

6.  

It is computationally infeasible to find any pair (x, y) such that H(x) = H(y). This is sometimes 

referred to as strong collision resistance.
[2]

[2] Unfortunately, these terms are not used consistently. Alternate terms used in 
the literature include one-way hash function: (properties 4 and 5); collision-
resistant hash function: (properties 4, 5, and 6); weak one-way hash function: 
(properties 4 and 5); strong one-way hash function: (properties 4, 5, and 6). The 
reader must take care in reading the literature to determine the meaning of the 
particular terms used.

The first three properties are requirements for the practical application of a hash function to message 
authentication.

The fourth property, the one-way property, states that it is easy to generate a code given a message 
but virtually impossible to generate a message given a code. This property is important if the 
authentication technique involves the use of a secret value (Figure 11.5e). The secret value itself is not 
sent; however, if the hash function is not one way, an attacker can easily discover the secret value: If 
the attacker can observe or intercept a transmission, the attacker obtains the message M and the hash 
code C = H(S

AB
||M). The attacker then inverts the hash function to obtain S

AB
||M = H1(C). Because the 

attacker now has both M and S
AB

||M, it is a trivial matter to recover S
AB

.

The fifth property guarantees that an alternative message hashing to the same value as a given 
message cannot be found. This prevents forgery when an encrypted hash code is used (Figures 11.5b 
and c). For these cases, the opponent can read the message and therefore generate its hash code. 
However, because the opponent does not have the secret key, the opponent should not be able to alter 
the message without detection. If this property were not true, an attacker would be capable of the 
following sequence: First, observe or intercept a message plus its encrypted hash code; second, 
generate an unencrypted hash code from the message; third, generate an alternate message with the 
same hash code.

The sixth property refers to how resistant the hash function is to a type of attack known as the birthday 
attack, which we examine shortly.

[Page 336]

Simple Hash Functions

All hash functions operate using the following general principles. The input (message, file, etc.) is 
viewed as a sequence of n-bit blocks. The input is processed one block at a time in an iterative fashion 
to produce an n-bit hash function.

One of the simplest hash functions is the bit-by-bit exclusive-OR (XOR) of every block. This can be 
expressed as follows:
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C
i
 = b

i1
  b

i1
  ...  b

im

where

C
i = ith bit of the hash code, 1  i  n

m = number of n-bit blocks in the input

bij = ith bit in jth block

= XOR operation

 
This operation produces a simple parity for each bit position and is known as a longitudinal redundancy 
check. It is reasonably effective for random data as a data integrity check. Each n-bit hash value is 

equally likely. Thus, the probability that a data error will result in an unchanged hash value is 2n. With 
more predictably formatted data, the function is less effective. For example, in most normal text files, 
the high-order bit of each octet is always zero. So if a 128-bit hash value is used, instead of an 
effectiveness of 2128, the hash function on this type of data has an effectiveness of 2112.

A simple way to improve matters is to perform a one-bit circular shift, or rotation, on the hash value 
after each block is processed. The procedure can be summarized as follows:

1.  

Initially set the n-bit hash value to zero.

2.  

Process each successive n-bit block of data as follows:

a.  

Rotate the current hash value to the left by one bit.

b.  

XOR the block into the hash value.

This has the effect of "randomizing" the input more completely and overcoming any regularities that 
appear in the input. Figure 11.7 illustrates these two types of hash functions for 16-bit hash values.

Figure 11.7. Two Simple Hash Functions

(This item is displayed on page 337 in the print version) 
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Although the second procedure provides a good measure of data integrity, it is virtually useless for data 
security when an encrypted hash code is used with a plaintext message, as in Figures 11.5b and c. 
Given a message, it is an easy matter to produce a new message that yields that hash code: Simply 
prepare the desired alternate message and then append an n-bit block that forces the new message plus 
block to yield the desired hash code.

Although a simple XOR or rotated XOR (RXOR) is insufficient if only the hash code is encrypted, you may 
still feel that such a simple function could be useful when the message as well as the hash code are 
encrypted (Figure 11.5a). But you must be careful. A technique originally proposed by the National 
Bureau of Standards used the simple XOR applied to 64-bit blocks of the message and then an 
encryption of the entire message that used the cipher block chaining (CBC) mode. We can define the 
scheme as follows: Given a message consisting of a sequence of 64-bit blocks X1, X2,..., XN

, define the 

file:///D|/1/0131873164/ch11lev1sec4.html (4 von 9) [14.10.2007 09:41:13]



Section 11.4.  Hash Functions

hash code C as the block-by-block XOR of all blocks and append the hash code as the final block:

[Page 337]

C = X
N+1 = X1  X2  ...  X

N

Next, encrypt the entire message plus hash code, using CBC mode to produce the encrypted message 
Y1, Y2,..., YN+1. [JUEN85] points out several ways in which the ciphertext of this message can be 

manipulated in such a way that it is not detectable by the hash code. For example, by the definition of 
CBC (Figure 6.4), we have

X1 = IV  D(K, Y1)

X
i = Y

i1
  D(K, Y

i
)

X
N+1 = Y

N
  D(K, Y

N+1)

 

[Page 338]

But X
N+1 is the hash code:

X
N+1 = X1  X2  ...  X

N

 = [IV  D(K, Y1)]  [Y1  D(K, Y2)]  ...  [YN1  ...  D (K, Y
N
)]

 
Because the terms in the preceding equation can be XORed in any order, it follows that the hash code 
would not change if the ciphertext blocks were permuted.

Birthday Attacks

Suppose that a 64-bit hash code is used. One might think that this is quite secure. For example, if an 
encrypted hash code C is transmitted with the corresponding unencrypted message M (Figure 11.5b or 
11.5c), then an opponent would need to find an M' such that H(M') = H(M) to substitute another 
message and fool the receiver. On average, the opponent would have to try about 263 messages to find 
one that matches the hash code of the intercepted message [see Appendix 11A, Equation (11.1)].

However, a different sort of attack is possible, based on the birthday paradox (Appendix 11A). Yuval 
proposed the following strategy [YUVA79]:

file:///D|/1/0131873164/ch11lev1sec4.html (5 von 9) [14.10.2007 09:41:13]



Section 11.4.  Hash Functions

1.  

The source, A, is prepared to "sign" a message by appending the appropriate m-bit hash code 
and encrypting that hash code with A's private key (Figure 11.5c).

2.  

The opponent generates 2m/2 variations on the message, all of which convey essentially the 
same meaning. The opponent prepares an equal number of messages, all of which are variations 
on the fraudulent message to be substituted for the real one.

3.  

The two sets of messages are compared to find a pair of messages that produces the same hash 
code. The probability of success, by the birthday paradox, is greater than 0.5. If no match is 
found, additional valid and fraudulent messages are generated until a match is made.

4.  

The opponent offers the valid variation to A for signature. This signature can then be attached to 
the fraudulent variation for transmission to the intended recipient. Because the two variations 
have the same hash code, they will produce the same signature; the opponent is assured of 
success even though the encryption key is not known.

Thus, if a 64-bit hash code is used, the level of effort required is only on the order of 232 [see Appendix 
11A, Equation (11.7)].

The generation of many variations that convey the same meaning is not difficult. For example, the 
opponent could insert a number of "space-space-backspace" character pairs between words throughout 
the document. Variations could then be generated by substituting "space-backspace-space" in selected 
instances. Alternatively, the opponent could simply reword the message but retain the meaning. Figure 
11.8 [DAVI89] provides an example.

Figure 11.8. A Letter in 237 Variations [DAVI89]

(This item is displayed on page 339 in the print version) 

[View full size image]
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The conclusion to be drawn from this is that the length of the hash code should be substantial. We 
discuss this further in Section 11.5.

[Page 339]

Block Chaining Techniques

A number of proposals have been made for hash functions based on using a cipher block chaining 
technique, but without the secret key. One of the first such proposals was that of Rabin [RABI78]. 
Divide a message M into fixed-size blocks M1, M2,..., MN

 and use a symmetric encryption system such as 

DES to compute the hash code G as follows:
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Ho = initial value

H
i

= E(M
i
, H

i
, H

i1
)

G = H
N

 

[Page 340]

This is similar to the CBC technique, but in this case there is no secret key. As with any hash code, this 
scheme is subject to the birthday attack, and if the encryption algorithm is DES and only a 64-bit hash 
code is produced, then the system is vulnerable.

Furthermore, another version of the birthday attack can be used even if the opponent has access to only 
one message and its valid signature and cannot obtain multiple signings. Here is the scenario; we 
assume that the opponent intercepts a message with a signature in the form of an encrypted hash code 
and that the unencrypted hash code is m bits long:

1.  

Use the algorithm defined at the beginning of this subsection to calculate the unencrypted hash 
code G.

2.  

Construct any desired message in the form Q1, Q2,..., QN2.

3.  

Compute for Hi = E(Qi, Hi1
) for 1  i  (N 2).

4.  

Generate 2m/2 random blocks; for each block X, compute E(X, H
N2). Generate an additional 2m/2 

random blocks; for each block Y, compute D(Y, G), where D is the decryption function 
corresponding to E.

5.  

Based on the birthday paradox, with high probability there will be an X and Y such that E(X, H
N2) 

= D(Y, G).

6.  
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Form the message Q1, Q2,..., QN2, X, Y. This message has the hash code G and therefore can be 

used with the intercepted encrypted signature.

This form of attack is known as a meet-in-the-middle attack. A number of researchers have proposed 
refinements intended to strengthen the basic block chaining approach. For example, Davies and Price 
[DAVI89] describe the following variation:

H
i
 = E(M

i
, H

i1
)  H

i1

Another variation, proposed in [MEYE88],

H
i
 = E(H

i1
, M

i
)  M

i

However, both of these schemes have been shown to be vulnerable to a variety of attacks [MIYA90]. 
More generally, it can be shown that some form of birthday attack will succeed against any hash scheme 
involving the use of cipher block chaining without a secret key provided that either the resulting hash 
code is small enough (e.g., 64 bits or less) or that a larger hash code can be decomposed into 
independent subcodes [JUEN87].

Thus, attention has been directed at finding other approaches to hashing. Many of these have also been 
shown to have weaknesses [MITC92]. We examine two strong hash functions in Chapter 12.

 
  

file:///D|/1/0131873164/ch11lev1sec4.html (9 von 9) [14.10.2007 09:41:13]

file:///D|/1/0131873164/6991536.html


Section 11.5.  Security of Hash Functions and Macs
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11.5. Security of Hash Functions and Macs

Just as with symmetric and public-key encryption, we can group attacks on hash functions and MACs 
into two categories: brute-force attacks and cryptanalysis.

[Page 341]

Brute-Force Attacks

The nature of brute-force attacks differs somewhat for hash functions and MACs.

Hash Functions

The strength of a hash function against brute-force attacks depends solely on the length of the hash 
code produced by the algorithm. Recall from our discussion of hash functions that there are three 
desirable properties:

●     One-way: For any given code h, it is computationally infeasible to find x such that H(x) = h.

●     Weak collision resistance: For any given block x, it is computationally infeasible to find y  x 
with H(y) = H(x).

●     Strong collision resistance: It is computationally infeasible to find any pair (x, y) such that H
(x) = H(y).

For a hash code of length n, the level of effort required, as we have seen is proportional to the following:

One way 2n

Weak collision resistance 2n

Strong collision resistance 2n/2

 
If strong collision resistance is required (and this is desirable for a general-purpose secure hash code), 

then the value 2n/2 determines the strength of the hash code against brute-force attacks. Oorschot and 
Wiener [VANO94] presented a design for a $10 million collision search machine for MD5, which has a 
128-bit hash length, that could find a collision in 24 days. Thus a 128-bit code may be viewed as 
inadequate. The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash 
length. With a hash length of 160 bits, the same search machine would require over four thousand years 
to find a collision. However, even 160 bits is now considered weak. We return to this topic in Chapter 12.

Message Authentication Codes

A brute-force attack on a MAC is a more difficult undertaking because it requires known message-MAC 
pairs. Let us see why this is so. To attack a hash code, we can proceed in the following way. Given a 

file:///D|/1/0131873164/ch11lev1sec5.html (1 von 4) [14.10.2007 09:41:14]



Section 11.5.  Security of Hash Functions and Macs

fixed message x with n-bit hash code h = H(x), a brute-force method of finding a collision is to pick a 
random bit string y and check if H(y) = H(x). The attacker can do this repeatedly off line. Whether an 
off-line attack can be used on a MAC algorithm depends on the relative size of the key and the MAC.

To proceed, we need to state the desired security property of a MAC algorithm, which can be expressed 
as follows:

●     Computation resistance: Given one or more text-MAC pairs [x
i
, C(K, x

i
)], it is computationally 

infeasible to compute any text-MAC pair [x, C(K, x)] for any new input x  x
i
.

In other words, the attacker would like to come up with the valid MAC code for a given message x. 
There are two lines of attack possible: Attack the key space and attack the MAC value. We examine each 
of these in turn.

[Page 342]

If an attacker can determine the MAC key, then it is possible to generate a valid MAC value for any input 
x. Suppose the key size is k bits and that the attacker has one known text-MAC pair. Then the attacker 
can compute the n-bit MAC on the known text for all possible keys. At least one key is guaranteed to 
produce the correct MAC, namely, the valid key that was initially used to produce the known text-MAC 

pair. This phase of the attack takes a level of effort proportional to 2k (that is, one operation for each of 

the 2k possible key values). However, as was described earlier, because the MAC is a many-to-one 
mapping, there may be other keys that produce the correct value. Thus, if more than one key is found 
to produce the correct value, additional text-MAC pairs must be tested. It can be shown that the level of 
effort drops off rapidly with each additional text-MAC pair and that the overall level of effort is roughly 

2k [MENE97].

An attacker can also work on the MAC value without attempting to recover the key. Here, the objective 
is to generate a valid MAC value for a given message or to find a message that matches a given MAC 
value. In either case, the level of effort is comparable to that for attacking the one-way or weak collision 

resistant property of a hash code, or 2n. In the case of the MAC, the attack cannot be conducted off line 
without further input; the attacker will require chosen text-MAC pairs or knowledge of the key.

To summarize, the level of effort for brute-force attack on a MAC algorithm can be expressed as min(2k, 

2n). The assessment of strength is similar to that for symmetric encryption algorithms. It would appear 

reasonable to require that the key length and MAC length satisfy a relationship such as min(k, n)  N, 
where N is perhaps in the range of 128 bits.

Cryptanalysis

As with encryption algorithms, cryptanalytic attacks on hash functions and MAC algorithms seek to 
exploit some property of the algorithm to perform some attack other than an exhaustive search. The 
way to measure the resistance of a hash or MAC algorithm to cryptanalysis is to compare its strength to 
the effort required for a brute-force attack. That is, an ideal hash or MAC algorithm will require a 
cryptanalytic effort greater than or equal to the brute-force effort.

Hash Functions
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In recent years, there has been considerable effort, and some successes, in developing cryptanalytic 
attacks on hash functions. To understand these, we need to look at the overall structure of a typical 
secure hash function, indicated in Figure 11.9. This structure, referred to as an iterated hash function, 
was proposed by Merkle [MERK79, MERK89] and is the structure of most hash functions in use today, 
including SHA and Whirlpool, which are discussed in Chapter 12. The hash function takes an input 
message and partitions it into L fixed-sized blocks of b bits each. If necessary, the final block is padded 
to b bits. The final block also includes the value of the total length of the input to the hash function. The 
inclusion of the length makes the job of the opponent more difficult. Either the opponent must find two 
messages of equal length that hash to the same value or two messages of differing lengths that, 
together with their length values, hash to the same value.

[Page 343]

Figure 11.9. General Structure of Secure Hash Code

[View full size image]

 
The hash algorithm involves repeated use of a compression function, f, that takes two inputs (an n-bit 
input from the previous step, called the chaining variable, and a b-bit block) and produces an n-bit 
output. At the start of hashing, the chaining variable has an initial value that is specified as part of the 
algorithm. The final value of the chaining variable is the hash value. Often, b > n; hence the term 
compression. The hash function can be summarized as follows:

CV
o

= IV = initial n-bit value

CV
i = f(CV

i1
, Y

i1
) 1  i  L

H(M) = CV
L

 
where the input to the hash function is a message M consisting of the blocks Yo, Y1,..., YL1.

The motivation for this iterative structure stems from the observation by Merkle [MERK89] and Damgard 
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[DAMG89] that if the compression function is collision resistant, then so is the resultant iterated hash 

function.
[3]

 Therefore, the structure can be used to produce a secure hash function to operate on a 
message of any length. The problem of designing a secure hash function reduces to that of designing a 
collision-resistant compression function that operates on inputs of some fixed size.

[3] The converse is not necessarily true.

Cryptanalysis of hash functions focuses on the internal structure of f and is based on attempts to find 
efficient techniques for producing collisions for a single execution of f. Once that is done, the attack 
must take into account the fixed value of IV. The attack on f depends on exploiting its internal structure. 
Typically, as with symmetric block ciphers, f consists of a series of rounds of processing, so that the 
attack involves analysis of the pattern of bit changes from round to round.

Keep in mind that for any hash function there must exist collisions, because we are mapping a message 
of length at least equal to twice the block size b (because we must append a length field) into a hash 

code of length n, where b  n. What is required is that it is computationally infeasible to find collisions.

[Page 344]

The attacks that have been mounted on hash functions are rather complex and beyond our scope here. 
For the interested reader, [DOBB96] and [BELL97] are recommended.

Message Authentication Codes

There is much more variety in the structure of MACs than in hash functions, so it is difficult to generalize 
about the cryptanalysis of MACs. Further, far less work has been done on developing such attacks. A 
useful recent survey of some methods for specific MACs is [PREN96].
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11.6. Recommended Reading

[JUEN85] and [JUEN87] provide a good background on message authentication, with a focus on 
cryptographic MACs and hash functions. Solid treatments of hash functions and message authentication 
codes are found in [STIN02] and [MENE97]. A good recent survey is [PREN99].

JUEN85 Jueneman, R.; Matyas, S.; and Meyer, C. "Message Authentication." IEEE 
Communications Magazine, September 1988.

JUEN87 Jueneman, R. "Electronic Document Authentication." IEEE Network Magazine, 
April 1987.

MENE97 Menezes, A.; Oorshcot, P.; and Vanstone, S. Handbook of Applied 
Cryptography. Boca Raton, FL: CRC Press, 1997.

PREN99 Preneel, B. "The State of Cryptographic Hash Functions." Proceedings, 
EUROCRYPT '96, 1996; published by Springer-Verlag.

STIN02 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 
2002.
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11.7. Key Terms, Review Questions, and Problems

Key Terms

authenticator

birthday attack

birthday paradox

compression function

cryptographic checksum

hash code

hash function

hash value

message authentication

message authentication code (MAC)

message digest

one-way hash function

strong collision resistance

weak collision resistance

Review Questions

11.1 What types of attacks are addressed by message authentication?

11.2 What two levels of functionality comprise a message authentication or digital signature 
mechanism?

11.3 What are some approaches to producing message authentication?
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11.4 When a combination of symmetric encryption and an error control code is used for 
message authentication, in what order must the two functions be performed?

[Page 345]

11.5 What is a message authentication code?

11.6 What is the difference between a message authentication code and a one-way hash 
function?

11.7 In what ways can a hash value be secured so as to provide message authentication?

11.8 Is it necessary to recover the secret key in order to attack a MAC algorithm?

11.9 What characteristics are needed in a secure hash function?

11.10 What is the difference between weak and strong collision resistance?

11.11 What is the role of a compression function in a hash function?

Problems

11.1 If F is an error-detection function, either internal or external use (Figure 11.2) will 
provide error-detection capability. If any bit of the transmitted message is altered, this 
will be reflected in a mismatch of the received FCS and the calculated FCS, whether 
the FCS function is performed inside or outside the encryption function. Some codes 
also provide an error-correction capability. Depending on the nature of the function, if 
one or a small number of bits is altered in transit, the error-correction code contains 
sufficient redundant information to determine the errored bit or bits and correct them. 
Clearly, an error-correction code will provide error correction capability when used 
external to the encryption function. Will it also provide this capability if used internal 
to the encryption function?

11.2 The data authentication algorithm, described in Section 11.3, can be defined as using 
the cipher block chaining (CBC) mode of operation of DES with an initialization vector 
of zero (Figure 11.6). Show that the same result can be produced using the cipher 
feedback mode.
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